Category Archives: SAP

How To Cope With Decision Fatigue

When members of Lowe’s Innovation Labs first began talking with the home improvement retailer’s senior executives about how disruptive technologies would affect the future, the presentations were well received but nothing stuck.

“We’d give a really great presentation and everyone would say, ‘Great job,’ but nothing would really happen,” says Amanda Manna, head of narratives and partnerships for the lab.

The team realized that it needed to ditch the PowerPoints and try something radical. The team’s leader, Kyle Nel, is a behavioral scientist by training. He knows people are wired to receive new information best through stories. Sharing far-future concepts through narrative, he surmised, could unlock hidden potential to drive meaningful change.

So Nel hired science fiction writers to pen the future in comic book format, with characters and a narrative arc revealed pane by pane.

The first storyline, written several years before Oculus Rift became a household name, told the tale of a couple envisioning their kitchen renovation using virtual reality headsets. The comic might have been fun and fanciful, but its intent was deadly serious. It was a vision of a future in which Lowe’s might solve one of its long-standing struggles: the approximately US$ 70 billion left on the table when people are unable to start a home improvement project because they can’t envision what it will look like.

When the lab presented leaders with the first comic, “it was like a light bulb went on,” says Manna. “Not only did they immediately understand the value of the concept, they were convinced that if we didn’t build it, someone else would.”

Today, Lowe’s customers in select stores can use the HoloRoom How To virtual reality tool to learn basic DIY skills in an interactive and immersive environment.

SAP Q417 DigitalDoubles Feature3 Image2 How To Cope With Decision FatigueOther comics followed and were greeted with similar enthusiasm—and investment, where possible. One tells the story of robots that help customers navigate stores. That comic spawned the LoweBot, which roamed the aisles of several Lowe’s stores during a pilot program in California and is being evaluated to determine next steps.

And the comic about tools that can be 3D-printed in space? Last year, Lowe’s partnered with Made in Space, which specializes in making 3D printers that can operate in zero gravity, to install the first commercial 3D printer in the International Space Station, where it was used to make tools and parts for astronauts.

The comics are the result of sending writers out on an open-ended assignment, armed with trends, market research, and other input, to envision what home improvement planning might look like in the future or what the experience of shopping will be in 10 years. The writers come back with several potential story ideas in a given area and work collaboratively with lab team members to refine it over time.

The process of working with writers and business partners to develop the comics helps the future strategy team at Lowe’s, working under chief development officer Richard D. Maltsbarger, to inhabit that future. They can imagine how it might play out, what obstacles might surface, and what steps the company would need to take to bring that future to life.

Once the final vision hits the page, the lab team can clearly envision how to work backward to enable the innovation. Importantly, the narrative is shared not only within the company but also out in the world. It serves as a kind of “bat signal” to potential technology partners with capabilities that might be required to make it happen, says Manna. “It’s all part of our strategy for staking a claim in the future.”

Companies like Lowe’s are realizing that standard ways of planning for the future won’t get them where they need to go. The problem with traditional strategic planning is that the approach, which dates back to the 1950s and has remained largely unchanged since then, is based on the company’s existing mission, resources, core competencies, and competitors.

Yet the future rarely looks like the past. What’s more, digital technology is now driving change at exponential rates. Companies must be able to analyze and assess the potential impacts of the many variables at play, determine the possible futures they want to pursue, and develop the agility to pivot as conditions change along the way.

This is why planning must become completely oriented toward—and sourced from—the future, rather than from the past or the present. “Every winning strategy is based on a compelling insight, but most strategic planning originates in today’s marketplace, which means the resulting plans are constrained to incremental innovation,” says Bob Johansen, distinguished fellow at the Institute for the Future. “Most corporate strategists and CEOs are just inching their way to the future.” (Read more from Bob Johansen in the Thinkers story, “Fear Factor.”)

Inching forward won’t cut it anymore. Half of the S&P 500 organizations will be replaced over the next decade, according to research company Innosight. The reason? They can’t see the portfolio of possible futures, they can’t act on them, or both. Indeed, when SAP conducts future planning workshops with clients, we find that they usually struggle to look beyond current models and assumptions and lack clear ideas about how to work toward radically different futures.

Companies that want to increase their chances of long-term survival are incorporating three steps: envisioning, planning for, and executing on possible futures. And doing so all while the actual future is unfolding in expected and unexpected ways.

Those that pull it off are rewarded. A 2017 benchmarking report from the Strategic Foresight Research Network (SFRN) revealed that vigilant companies (those with the most mature processes for identifying, interpreting, and responding to factors that induce change) achieved 200% greater market capitalization growth and 33% higher profitability than the average, while the least mature companies experienced negative market-cap growth and had 44% lower profitability.

SAP Q417 DigitalDoubles Feature3 Image3 1024x572 How To Cope With Decision Fatigue

Looking Outside the Margins

“Most organizations lack sufficient capacity to detect, interpret, and act on the critically important but weak and ambiguous signals of fresh threats or new opportunities that emerge on the periphery of their usual business environment,” write George S. Day and Paul J. H. Schoemaker in their book Peripheral Vision.

But that’s exactly where effective future planning begins: examining what is happening outside the margins of day-to-day business as usual in order to peer into the future.

Business leaders who take this approach understand that despite the uncertainties of the future there are drivers of change that can be identified and studied and actions that can be taken to better prepare for—and influence—how events unfold.

That starts with developing foresight, typically a decade out. Ten years, most future planners agree, is the sweet spot. “It is far enough out that it gives you a bit more latitude to come up with a broader way to the future, allowing for disruption and innovation,” says Brian David Johnson, former chief futurist for Intel and current futurist in residence at Arizona State University’s Center for Science and the Imagination. “But you can still see the light from it.”

SAP Q417 DigitalDoubles Feature3 Image4 How To Cope With Decision FatigueThe process involves gathering information about the factors and forces—technological, business, sociological, and industry or ecosystem trends—that are effecting change to envision a range of potential impacts.

Seeing New Worlds

Intel, for example, looks beyond its own industry boundaries to envision possible future developments in adjacent businesses in the larger ecosystem it operates in. In 2008, the Intel Labs team, led by anthropologist Genevieve Bell, determined that the introduction of flexible glass displays would open up a whole new category of foldable consumer electronic devices.

To take advantage of that advance, Intel would need to be able to make silicon small enough to fit into some imagined device of the future. By the time glass manufacturer Corning unveiled its ultra-slim, flexible glass surface for mobile devices, laptops, televisions, and other displays of the future in 2012, Intel had already created design prototypes and kicked its development into higher gear. “Because we had done the future casting, we were already imagining how people might use flexible glass to create consumer devices,” says Johnson.

Because future planning relies so heavily on the quality of the input it receives, bringing in experts can elevate the practice. They can come from inside an organization, but the most influential insight may come from the outside and span a wide range of disciplines, says Steve Brown, a futurist, consultant, and CEO of BaldFuturist.com who worked for Intel Labs from 2007 to 2016.

Companies may look to sociologists or behaviorists who have insight into the needs and wants of people and how that influences their actions. Some organizations bring in an applied futurist, skilled at scanning many different forces and factors likely to coalesce in important ways (see Do You Need a Futurist?).

Do You Need a Futurist?

Most organizations need an outsider to help envision their future. Futurists are good at looking beyond the big picture to the biggest picture.

Business leaders who want to be better prepared for an uncertain and disruptive future will build future planning as a strategic capability into their organizations and create an organizational culture that embraces the approach. But working with credible futurists, at least in the beginning, can jump-start the process.

“The present can be so noisy and business leaders are so close to it that it’s helpful to provide a fresh outside-in point of view,” says veteran futurist Bob Johansen.

To put it simply, futurists like Johansen are good at connecting dots—lots of them. They look beyond the boundaries of a single company or even an industry, incorporating into their work social science, technical research, cultural movements, economic data, trends, and the input of other experts.

They can also factor in the cultural history of the specific company with whom they’re working, says Brian David Johnson, futurist in residence at Arizona State University’s Center for Science and the Imagination. “These large corporations have processes and procedures in place—typically for good reasons,” Johnson explains. “But all of those reasons have everything to do with the past and nothing to do with the future. Looking at that is important so you can understand the inertia that you need to overcome.”

One thing the best futurists will say they can’t do: predict the future. That’s not the point. “The future punishes certainty,” Johansen says, “but it rewards clarity.” The methods futurists employ are designed to trigger discussions and considerations of possibilities corporate leaders might not otherwise consider.

You don’t even necessarily have to buy into all the foresight that results, says Johansen. Many leaders don’t. “Every forecast is debatable,” Johansen says. “Foresight is a way to provoke insight, even if you don’t believe it. The value is in letting yourself be provoked.”

External expert input serves several purposes. It brings everyone up to a common level of knowledge. It can stimulate and shift the thinking of participants by introducing them to new information or ideas. And it can challenge the status quo by illustrating how people and organizations in different sectors are harnessing emerging trends.

The goal is not to come up with one definitive future but multiple possibilities—positive and negative—along with a list of the likely obstacles or accelerants that could surface on the road ahead. The result: increased clarity—rather than certainty—in the face of the unknown that enables business decision makers to execute and refine business plans and strategy over time.

Plotting the Steps Along the Way

Coming up with potential trends is an important first step in futuring, but even more critical is figuring out what steps need to be taken along the way: eight years from now, four years from now, two years from now, and now. Considerations include technologies to develop, infrastructure to deploy, talent to hire, partnerships to forge, and acquisitions to make. Without this vital step, says Brown, everybody goes back to their day jobs and the new thinking generated by future planning is wasted. To work, the future steps must be tangible, concrete, and actionable.

SAP Q417 DigitalDoubles Feature3 Image5 How To Cope With Decision FatigueOrganizations must build a roadmap for the desired future state that anticipates both developments and detours, complete with signals that will let them know if they’re headed in the right direction. Brown works with corporate leaders to set indicator flags to look out for on the way to the anticipated future. “If we see these flagged events occurring in the ecosystem, they help to confirm the strength of our hypothesis that a particular imagined future is likely to occur,” he explains.

For example, one of Brown’s clients envisioned two potential futures: one in which gestural interfaces took hold and another in which voice control dominated. The team set a flag to look out for early examples of the interfaces that emerged in areas such as home appliances and automobiles. “Once you saw not just Amazon Echo but also Google Home and other copycat speakers, it would increase your confidence that you were moving more towards a voice-first era rather than a gesture-first era,” Brown says. “It doesn’t mean that gesture won’t happen, but it’s less likely to be the predominant modality for communication.”

How to Keep Experiments from Being Stifled

Once organizations have a vision for the future, making it a reality requires testing ideas in the marketplace and then scaling them across the enterprise. “There’s a huge change piece involved,”
says Frank Diana, futurist and global consultant with Tata Consultancy Services, “and that’s the place where most
businesses will fall down.”

Many large firms have forgotten what it’s like to experiment in several new markets on a small scale to determine what will stick and what won’t, says René Rohrbeck, professor of strategy at the Aarhus School of Business and Social Sciences. Companies must be able to fail quickly, bring the lessons learned back in, adapt, and try again.

SAP Q417 DigitalDoubles Feature3 Image6 How To Cope With Decision FatigueLowe’s increases its chances of success by creating master narratives across a number of different areas at once, such as robotics, mixed-reality tools, on-demand manufacturing, sustainability, and startup acceleration. The lab maps components of each by expected timelines: short, medium, and long term. “From there, we’ll try to build as many of them as quickly as we can,” says Manna. “And we’re always looking for that next suite of things that we should be working on.” Along the way certain innovations, like the HoloRoom How-To, become developed enough to integrate into the larger business as part of the core strategy.

One way Lowe’s accelerates the process of deciding what is ready to scale is by being open about its nascent plans with the world. “In the past, Lowe’s would never talk about projects that weren’t at scale,” says Manna. Now the company is sharing its future plans with the media and, as a result, attracting partners that can jump-start their realization.

Seeing a Lowe’s comic about employee exoskeletons, for example, led Virginia Tech engineering professor Alan Asbeck to the retailer. He helped develop a prototype for a three-month pilot with stock employees at a Christiansburg, Virginia, store.

The high-tech suit makes it easier to move heavy objects. Employees trying out the suits are also fitted with an EEG headset that the lab incorporates into all its pilots to gauge unstated, subconscious reactions. That direct feedback on the user experience helps the company refine its innovations over time.

SAP Q417 DigitalDoubles Feature3 Image7 1024x572 How To Cope With Decision Fatigue

Make the Future Part of the Culture

Regardless of whether all the elements of its master narratives come to pass, Lowe’s has already accomplished something important: It has embedded future thinking into the culture of the company.

Companies like Lowe’s constantly scan the environment for meaningful economic, technology, and cultural changes that could impact its future assessments and plans. “They can regularly draw on future planning to answer challenges,” says Rohrbeck. “This intensive, ongoing, agile strategizing is only possible because they’ve done their homework up front and they keep it updated.”

It’s impossible to predict what’s going to happen in the future, but companies can help to shape it, says Manna of Lowe’s. “It’s really about painting a picture of a preferred future state that we can try to achieve while being flexible and capable of change as we learn things along the way.” D!


About the Authors

Dan Wellers is Global Lead, Digital Futures, at SAP.

Kai Goerlich is Chief Futurist at SAP’s Innovation Center Network.

Stephanie Overby is a Boston-based business and technology journalist.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Let’s block ads! (Why?)

Digitalist Magazine

Customer Retention Secrets For Startups

When members of Lowe’s Innovation Labs first began talking with the home improvement retailer’s senior executives about how disruptive technologies would affect the future, the presentations were well received but nothing stuck.

“We’d give a really great presentation and everyone would say, ‘Great job,’ but nothing would really happen,” says Amanda Manna, head of narratives and partnerships for the lab.

The team realized that it needed to ditch the PowerPoints and try something radical. The team’s leader, Kyle Nel, is a behavioral scientist by training. He knows people are wired to receive new information best through stories. Sharing far-future concepts through narrative, he surmised, could unlock hidden potential to drive meaningful change.

So Nel hired science fiction writers to pen the future in comic book format, with characters and a narrative arc revealed pane by pane.

The first storyline, written several years before Oculus Rift became a household name, told the tale of a couple envisioning their kitchen renovation using virtual reality headsets. The comic might have been fun and fanciful, but its intent was deadly serious. It was a vision of a future in which Lowe’s might solve one of its long-standing struggles: the approximately US$ 70 billion left on the table when people are unable to start a home improvement project because they can’t envision what it will look like.

When the lab presented leaders with the first comic, “it was like a light bulb went on,” says Manna. “Not only did they immediately understand the value of the concept, they were convinced that if we didn’t build it, someone else would.”

Today, Lowe’s customers in select stores can use the HoloRoom How To virtual reality tool to learn basic DIY skills in an interactive and immersive environment.

SAP Q417 DigitalDoubles Feature3 Image2 Customer Retention Secrets For StartupsOther comics followed and were greeted with similar enthusiasm—and investment, where possible. One tells the story of robots that help customers navigate stores. That comic spawned the LoweBot, which roamed the aisles of several Lowe’s stores during a pilot program in California and is being evaluated to determine next steps.

And the comic about tools that can be 3D-printed in space? Last year, Lowe’s partnered with Made in Space, which specializes in making 3D printers that can operate in zero gravity, to install the first commercial 3D printer in the International Space Station, where it was used to make tools and parts for astronauts.

The comics are the result of sending writers out on an open-ended assignment, armed with trends, market research, and other input, to envision what home improvement planning might look like in the future or what the experience of shopping will be in 10 years. The writers come back with several potential story ideas in a given area and work collaboratively with lab team members to refine it over time.

The process of working with writers and business partners to develop the comics helps the future strategy team at Lowe’s, working under chief development officer Richard D. Maltsbarger, to inhabit that future. They can imagine how it might play out, what obstacles might surface, and what steps the company would need to take to bring that future to life.

Once the final vision hits the page, the lab team can clearly envision how to work backward to enable the innovation. Importantly, the narrative is shared not only within the company but also out in the world. It serves as a kind of “bat signal” to potential technology partners with capabilities that might be required to make it happen, says Manna. “It’s all part of our strategy for staking a claim in the future.”

Companies like Lowe’s are realizing that standard ways of planning for the future won’t get them where they need to go. The problem with traditional strategic planning is that the approach, which dates back to the 1950s and has remained largely unchanged since then, is based on the company’s existing mission, resources, core competencies, and competitors.

Yet the future rarely looks like the past. What’s more, digital technology is now driving change at exponential rates. Companies must be able to analyze and assess the potential impacts of the many variables at play, determine the possible futures they want to pursue, and develop the agility to pivot as conditions change along the way.

This is why planning must become completely oriented toward—and sourced from—the future, rather than from the past or the present. “Every winning strategy is based on a compelling insight, but most strategic planning originates in today’s marketplace, which means the resulting plans are constrained to incremental innovation,” says Bob Johansen, distinguished fellow at the Institute for the Future. “Most corporate strategists and CEOs are just inching their way to the future.” (Read more from Bob Johansen in the Thinkers story, “Fear Factor.”)

Inching forward won’t cut it anymore. Half of the S&P 500 organizations will be replaced over the next decade, according to research company Innosight. The reason? They can’t see the portfolio of possible futures, they can’t act on them, or both. Indeed, when SAP conducts future planning workshops with clients, we find that they usually struggle to look beyond current models and assumptions and lack clear ideas about how to work toward radically different futures.

Companies that want to increase their chances of long-term survival are incorporating three steps: envisioning, planning for, and executing on possible futures. And doing so all while the actual future is unfolding in expected and unexpected ways.

Those that pull it off are rewarded. A 2017 benchmarking report from the Strategic Foresight Research Network (SFRN) revealed that vigilant companies (those with the most mature processes for identifying, interpreting, and responding to factors that induce change) achieved 200% greater market capitalization growth and 33% higher profitability than the average, while the least mature companies experienced negative market-cap growth and had 44% lower profitability.

SAP Q417 DigitalDoubles Feature3 Image3 1024x572 Customer Retention Secrets For Startups

Looking Outside the Margins

“Most organizations lack sufficient capacity to detect, interpret, and act on the critically important but weak and ambiguous signals of fresh threats or new opportunities that emerge on the periphery of their usual business environment,” write George S. Day and Paul J. H. Schoemaker in their book Peripheral Vision.

But that’s exactly where effective future planning begins: examining what is happening outside the margins of day-to-day business as usual in order to peer into the future.

Business leaders who take this approach understand that despite the uncertainties of the future there are drivers of change that can be identified and studied and actions that can be taken to better prepare for—and influence—how events unfold.

That starts with developing foresight, typically a decade out. Ten years, most future planners agree, is the sweet spot. “It is far enough out that it gives you a bit more latitude to come up with a broader way to the future, allowing for disruption and innovation,” says Brian David Johnson, former chief futurist for Intel and current futurist in residence at Arizona State University’s Center for Science and the Imagination. “But you can still see the light from it.”

SAP Q417 DigitalDoubles Feature3 Image4 Customer Retention Secrets For StartupsThe process involves gathering information about the factors and forces—technological, business, sociological, and industry or ecosystem trends—that are effecting change to envision a range of potential impacts.

Seeing New Worlds

Intel, for example, looks beyond its own industry boundaries to envision possible future developments in adjacent businesses in the larger ecosystem it operates in. In 2008, the Intel Labs team, led by anthropologist Genevieve Bell, determined that the introduction of flexible glass displays would open up a whole new category of foldable consumer electronic devices.

To take advantage of that advance, Intel would need to be able to make silicon small enough to fit into some imagined device of the future. By the time glass manufacturer Corning unveiled its ultra-slim, flexible glass surface for mobile devices, laptops, televisions, and other displays of the future in 2012, Intel had already created design prototypes and kicked its development into higher gear. “Because we had done the future casting, we were already imagining how people might use flexible glass to create consumer devices,” says Johnson.

Because future planning relies so heavily on the quality of the input it receives, bringing in experts can elevate the practice. They can come from inside an organization, but the most influential insight may come from the outside and span a wide range of disciplines, says Steve Brown, a futurist, consultant, and CEO of BaldFuturist.com who worked for Intel Labs from 2007 to 2016.

Companies may look to sociologists or behaviorists who have insight into the needs and wants of people and how that influences their actions. Some organizations bring in an applied futurist, skilled at scanning many different forces and factors likely to coalesce in important ways (see Do You Need a Futurist?).

Do You Need a Futurist?

Most organizations need an outsider to help envision their future. Futurists are good at looking beyond the big picture to the biggest picture.

Business leaders who want to be better prepared for an uncertain and disruptive future will build future planning as a strategic capability into their organizations and create an organizational culture that embraces the approach. But working with credible futurists, at least in the beginning, can jump-start the process.

“The present can be so noisy and business leaders are so close to it that it’s helpful to provide a fresh outside-in point of view,” says veteran futurist Bob Johansen.

To put it simply, futurists like Johansen are good at connecting dots—lots of them. They look beyond the boundaries of a single company or even an industry, incorporating into their work social science, technical research, cultural movements, economic data, trends, and the input of other experts.

They can also factor in the cultural history of the specific company with whom they’re working, says Brian David Johnson, futurist in residence at Arizona State University’s Center for Science and the Imagination. “These large corporations have processes and procedures in place—typically for good reasons,” Johnson explains. “But all of those reasons have everything to do with the past and nothing to do with the future. Looking at that is important so you can understand the inertia that you need to overcome.”

One thing the best futurists will say they can’t do: predict the future. That’s not the point. “The future punishes certainty,” Johansen says, “but it rewards clarity.” The methods futurists employ are designed to trigger discussions and considerations of possibilities corporate leaders might not otherwise consider.

You don’t even necessarily have to buy into all the foresight that results, says Johansen. Many leaders don’t. “Every forecast is debatable,” Johansen says. “Foresight is a way to provoke insight, even if you don’t believe it. The value is in letting yourself be provoked.”

External expert input serves several purposes. It brings everyone up to a common level of knowledge. It can stimulate and shift the thinking of participants by introducing them to new information or ideas. And it can challenge the status quo by illustrating how people and organizations in different sectors are harnessing emerging trends.

The goal is not to come up with one definitive future but multiple possibilities—positive and negative—along with a list of the likely obstacles or accelerants that could surface on the road ahead. The result: increased clarity—rather than certainty—in the face of the unknown that enables business decision makers to execute and refine business plans and strategy over time.

Plotting the Steps Along the Way

Coming up with potential trends is an important first step in futuring, but even more critical is figuring out what steps need to be taken along the way: eight years from now, four years from now, two years from now, and now. Considerations include technologies to develop, infrastructure to deploy, talent to hire, partnerships to forge, and acquisitions to make. Without this vital step, says Brown, everybody goes back to their day jobs and the new thinking generated by future planning is wasted. To work, the future steps must be tangible, concrete, and actionable.

SAP Q417 DigitalDoubles Feature3 Image5 Customer Retention Secrets For StartupsOrganizations must build a roadmap for the desired future state that anticipates both developments and detours, complete with signals that will let them know if they’re headed in the right direction. Brown works with corporate leaders to set indicator flags to look out for on the way to the anticipated future. “If we see these flagged events occurring in the ecosystem, they help to confirm the strength of our hypothesis that a particular imagined future is likely to occur,” he explains.

For example, one of Brown’s clients envisioned two potential futures: one in which gestural interfaces took hold and another in which voice control dominated. The team set a flag to look out for early examples of the interfaces that emerged in areas such as home appliances and automobiles. “Once you saw not just Amazon Echo but also Google Home and other copycat speakers, it would increase your confidence that you were moving more towards a voice-first era rather than a gesture-first era,” Brown says. “It doesn’t mean that gesture won’t happen, but it’s less likely to be the predominant modality for communication.”

How to Keep Experiments from Being Stifled

Once organizations have a vision for the future, making it a reality requires testing ideas in the marketplace and then scaling them across the enterprise. “There’s a huge change piece involved,”
says Frank Diana, futurist and global consultant with Tata Consultancy Services, “and that’s the place where most
businesses will fall down.”

Many large firms have forgotten what it’s like to experiment in several new markets on a small scale to determine what will stick and what won’t, says René Rohrbeck, professor of strategy at the Aarhus School of Business and Social Sciences. Companies must be able to fail quickly, bring the lessons learned back in, adapt, and try again.

SAP Q417 DigitalDoubles Feature3 Image6 Customer Retention Secrets For StartupsLowe’s increases its chances of success by creating master narratives across a number of different areas at once, such as robotics, mixed-reality tools, on-demand manufacturing, sustainability, and startup acceleration. The lab maps components of each by expected timelines: short, medium, and long term. “From there, we’ll try to build as many of them as quickly as we can,” says Manna. “And we’re always looking for that next suite of things that we should be working on.” Along the way certain innovations, like the HoloRoom How-To, become developed enough to integrate into the larger business as part of the core strategy.

One way Lowe’s accelerates the process of deciding what is ready to scale is by being open about its nascent plans with the world. “In the past, Lowe’s would never talk about projects that weren’t at scale,” says Manna. Now the company is sharing its future plans with the media and, as a result, attracting partners that can jump-start their realization.

Seeing a Lowe’s comic about employee exoskeletons, for example, led Virginia Tech engineering professor Alan Asbeck to the retailer. He helped develop a prototype for a three-month pilot with stock employees at a Christiansburg, Virginia, store.

The high-tech suit makes it easier to move heavy objects. Employees trying out the suits are also fitted with an EEG headset that the lab incorporates into all its pilots to gauge unstated, subconscious reactions. That direct feedback on the user experience helps the company refine its innovations over time.

SAP Q417 DigitalDoubles Feature3 Image7 1024x572 Customer Retention Secrets For Startups

Make the Future Part of the Culture

Regardless of whether all the elements of its master narratives come to pass, Lowe’s has already accomplished something important: It has embedded future thinking into the culture of the company.

Companies like Lowe’s constantly scan the environment for meaningful economic, technology, and cultural changes that could impact its future assessments and plans. “They can regularly draw on future planning to answer challenges,” says Rohrbeck. “This intensive, ongoing, agile strategizing is only possible because they’ve done their homework up front and they keep it updated.”

It’s impossible to predict what’s going to happen in the future, but companies can help to shape it, says Manna of Lowe’s. “It’s really about painting a picture of a preferred future state that we can try to achieve while being flexible and capable of change as we learn things along the way.” D!


About the Authors

Dan Wellers is Global Lead, Digital Futures, at SAP.

Kai Goerlich is Chief Futurist at SAP’s Innovation Center Network.

Stephanie Overby is a Boston-based business and technology journalist.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Let’s block ads! (Why?)

Digitalist Magazine

Why Technology Alone Is Not Enough – Part 1

277919 277919 h ergb s gl e1515189635350 Why Technology Alone Is Not Enough – Part 1

Rebels hacked the Death Star: Is your organization next?

A long time ago in a galaxy far, far away, the Empire made one critical and fatal mistake that would lead to their eventual downfall. They never believed that the rebels would be able to breach their defenses at Scarif and steal the plans for their most prized weapon: The Death Star.

Plans were placed in a vault, in a tall tower, surrounded by thousands of heavily armed troops and Imperial Walkers, on a planet completely surrounded by an impenetrable force field, defended by hundreds of spaceships.

Yet it only took a group of highly motivated and determined individuals to get through their defenses, and the consequences were dire.

Where was the Empire’s incident plan? Why weren’t the Death Star plans encrypted? Why didn’t they user two-factor authentication?

Every day brings news of another data breach. Some are huge data breaches like eBay, Equifax, or Yahoo, while others are much smaller. However, they all have one thing in common: Once in, hackers were able to get a lot of data.

Often, hacks are limited to users’ personal data, but sometimes customers’ credit card details are also stolen. Many companies that suffer a breach already have security measures in place: They patch servers, firewalls, wide-area file services, and intrusion detection systems. Many have an information security policy and carry out penetration tests, but the hackers get through anyway.

Plan for the breach

No matter how high you build your walls, someone with enough skill, determination, and resources can get in. Nation states are now engaging in corporate espionage, and if North Korea really wants your data files, you are going to find it very difficult to keep them out.

Humans are often the biggest attack vector in any system, and highly sophisticated security systems can be breached through clever social engineering. In an effort to keep their data safe, organizations are spending more and more to build taller walls with increasingly sophisticated technology, but, time and again, these are breached and data is exposed – sometimes through very sophisticated attacks, and sometimes through human error.

While it is extremely important to focus on strong information security, what the Empire forgot to study was how to mitigate the damage if and when rebels managed to breach their security. They didn’t plan for a breach because they never thought it would happen. This is the same mistake that many organizations on this planet are making, too.

Create an incident plan

Every organization should have a data-breach incident plan. When the proverbial item hits the fan, the last thing needed is employees running around like headless chickens, desperately trying to manage the situation, and making things up as they go along.

The moments after a breach is discovered are extremely stressful for all involved, but they are also the most crucial. Without a plan, matters can be made much, much worse.

Forensic evidence can be destroyed, further data exposed, and misinformation can be disseminated. During this time, everyone should know what they need to do so that the crisis can be managed.

Audit your data

One of the great features of the forthcoming GDPR regulations is that European organizations are being forced to audit their data. Many organizations don’t know what data they hold, how much of it they have, and where it is located.

Organizations that have grown organically over time are likely to have many legacy systems with different data residing in each. Companies should consider what personal data they actually need and ensure that the rest is removed, or at least fully encrypted. Is it really necessary to keep the personal details of someone who bought from you five years ago?

Separation of systems to avoid cross-contamination

A chain is only as strong as its weakest link. Many secure systems have been breached because of a weak entry point. It is important to ensure that systems are separated. That way if one is breached, the breach is contained to that system rather than across all systems, thus limiting your exposure.

Implemented correctly, an e-commerce site built on a highly secure platform is going to be very difficult to breach. You may also have a WordPress blog sitting within the same environment. WordPress is by far the most-hacked web platform in the world. Data released by Securi showed that 74% of a sample of hacked websites in 2016 ran WordPress.

While some of that blame is on WordPress users not keeping their software up to date, this number should concern you if you run a WordPress site. You concern should be magnified if you run a WordPress site hosted on the same environment as your e-commerce store.

If your WordPress platform is breached, it could be used as an entry point into your e-commerce website, where the most valuable data resides. The WordPress site should be hosted on an entirely different and separated hosting environment than your e-commerce platform to ensure that there is no cross-contamination.

Data encryption

Data encryption is more complex than it may immediately appear. In theory, it makes complete sense to encrypt all personal data held within your e-commerce platform’s database. If the data is breached without the key, it is meaningless.

The biggest problem is that your application generally needs to be able to decrypt data on the fly, meaning that somewhere within your code is the key. Therefore, if someone gets hold of your application and the data, they may be able to decrypt the data using that key.

Another encryption challenge is performance. If your application needs to decrypt data in real time, this can significantly increase performance overheads, and often it is just not practical. Encryption is a great way to protect your data, but it comes with its own set of challenges.

Deception-based security

Deception-based security presents hackers with fake vulnerabilities, or even fake data that can obscure the real thing.

Hackers generally look for the most basic vulnerabilities, like known exploits, before deploying more advanced techniques. Once they find a vulnerability, they are likely to focus on that. If they are then given access to data that appears sensitive and real but is, in fact, fake, you have a chance of throwing them off the scent.

You can also more easily monitor that activity, which increases your odds of identifying, then blocking, the attacker. By deploying decoy systems and data, you can give the attacker the illusion of successfully breaching your network.

Best cybersecurity practices for the future

Organizations should not solely focus on keeping hackers out, as this alone will not protect their data from everyone. A determined, experienced, and well-resourced team could probably hack almost any e-commerce platform if they tried hard enough.

Building a bigger wall will only deter them for so long. A greater focus on mitigating breaches rather than just trying to prevent them is needed to ensure that all of your data is as protected as it can be.

If the Empire had tasked someone with auditing their data and creating a robust and tested incident plan, things could have turned out very differently.

Do or not do. There is no try!

The first step in breach remediation is knowing you’ve been hacked. See The Future of Cybersecurity: Trust as Competitive Advantage.

This article originally appeared on Future of Customer Engagement and Commerce.

Comments

Let’s block ads! (Why?)

Digitalist Magazine

Digital Transformation In The Chemicals Industry

As 2015 winds down, it’s time to look forward to 2016 and explore the social media and content marketing trends that will impact marketing strategies over the next 15 months or so.

Some of the upcoming trends simply indicate an intensification of current trends, however others indicate that there are new things that will have a big impact in 2016.

Take a look at a few trends that should definitely factor in your planning for 2016.

1. SEO will focus more on social media platforms and less on search engines

Clearly Google is going nowhere. In fact, in 2016 Google’s word will still essentially be law when it comes to search engine optimization.

However, in 2016 there will be some changes in SEO. Many of these changes will be due to the fact that users are increasingly searching for products and services directly from websites such as Facebook, Pinterest, and YouTube.

There are two reasons for this shift in customer habits:

  • Customers are relying more and more on customer comments, feedback, and reviews before making purchasing decisions. This means that they are most likely to search directly on platforms where they can find that information.
  • Customers who are seeking information about products and services feel that video- and image-based content is more trustworthy.

2. The need to optimize for mobile and touchscreens will intensify

Consumers are using their mobile devices and tablets for the following tasks at a sharply increasing rate:

  • Sending and receiving emails and messages
  • Making purchases
  • Researching products and services
  • Watching videos
  • Reading or writing reviews and comments
  • Obtaining driving directions and using navigation apps
  • Visiting news and entertainment websites
  • Using social media

Most marketers would be hard-pressed to look at this list and see any case for continuing to avoid mobile and touchscreen optimization. Yet, for some reason many companies still see mobile optimization as something that is nice to do, but not urgent.

This lack of a sense of urgency seemingly ignores the fact that more than 80% of the highest growing group of consumers indicate that it is highly important that retailers provide mobile apps that work well. According to the same study, nearly 90% of Millennials believe that there are a large number of websites that have not done a very good job of optimizing for mobile.

3. Content marketing will move to edgier social media platforms

Platforms such as Instagram and Snapchat weren’t considered to be valid targets for mainstream content marketing efforts until now.

This is because they were considered to be too unproven and too “on the fringe” to warrant the time and marketing budget investments, when platforms such as Facebook and YouTube were so popular and had proven track records when it came to content marketing opportunity and success.

However, now that Instagram is enjoying such tremendous growth, and is opening up advertising opportunities to businesses beyond its brand partners, it (along with other platforms) will be seen as more and more viable in 2016.

4. Facebook will remain a strong player, but the demographic of the average user will age

In 2016, Facebook will likely remain the flagship social media website when it comes to sharing and promoting content, engaging with customers, and increasing Internet recognition.

However, it will become less and less possible to ignore the fact that younger consumers are moving away from the platform as their primary source of online social interaction and content consumption. Some companies may be able to maintain status quo for 2016 without feeling any negative impacts.

However, others may need to rethink their content marketing strategies for 2016 to take these shifts into account. Depending on their branding and the products or services that they offer, some companies may be able to profit from these changes by customizing the content that they promote on Facebook for an older demographic.

5. Content production must reflect quality and variety

  • Both B2B and B2C buyers value video based content over text based content.
  • While some curated content is a good thing, consumers believe that custom content is an indication that a company wishes to create a relationship with them.
  • The great majority of these same consumers report that customized content is useful for them.
  • B2B customers prefer learning about products and services through content as opposed to paid advertising.
  • Consumers believe that videos are more trustworthy forms of content than text.

Here is a great infographic depicting the importance of video in content marketing efforts:
small business video infographic Digital Transformation In The Chemicals Industry

A final, very important thing to note when considering content trends for 2016 is the decreasing value of the keyword as a way of optimizing content. In fact, in an effort to crack down on keyword stuffing, Google’s optimization rules have been updated to to kick offending sites out of prime SERP positions.

6. Oculus Rift will create significant changes in customer engagement

Oculus Rift is not likely to offer much to marketers in 2016. After all, it isn’t expected to ship to consumers until the first quarter. However, what Oculus Rift will do is influence the decisions that marketers make when it comes to creating customer interaction.

For example, companies that have not yet embraced storytelling may want to make 2016 the year that they do just that, because later in 2016 Oculus Rift may be the platform that their competitors will be using to tell stories while giving consumers a 360-degree vantage point.

For a deeper dive on engaging with customers through storytelling, see Brand Storytelling: Where Humanity Takes Center Stage.

Comments

Let’s block ads! (Why?)

Digitalist Magazine

How FMCG Firms Are Transforming Digitally

In the tech world in 2017, several trends emerged as signals amid the noise, signifying much larger changes to come.

As we noted in last year’s More Than Noise list, things are changing—and the changes are occurring in ways that don’t necessarily fit into the prevailing narrative.

While many of 2017’s signals have a dark tint to them, perhaps reflecting the times we live in, we have sought out some rays of light to illuminate the way forward. The following signals differ considerably, but understanding them can help guide businesses in the right direction for 2018 and beyond.

SAP Q417 DigitalDoubles Feature1 Image2 1024x572 How FMCG Firms Are Transforming Digitally

When a team of psychologists, linguists, and software engineers created Woebot, an AI chatbot that helps people learn cognitive behavioral therapy techniques for managing mental health issues like anxiety and depression, they did something unusual, at least when it comes to chatbots: they submitted it for peer review.

Stanford University researchers recruited a sample group of 70 college-age participants on social media to take part in a randomized control study of Woebot. The researchers found that their creation was useful for improving anxiety and depression symptoms. A study of the user interaction with the bot was submitted for peer review and published in the Journal of Medical Internet Research Mental Health in June 2017.

While Woebot may not revolutionize the field of psychology, it could change the way we view AI development. Well-known figures such as Elon Musk and Bill Gates have expressed concerns that artificial intelligence is essentially ungovernable. Peer review, such as with the Stanford study, is one way to approach this challenge and figure out how to properly evaluate and find a place for these software programs.

The healthcare community could be onto something. We’ve already seen instances where AI chatbots have spun out of control, such as when internet trolls trained Microsoft’s Tay to become a hate-spewing misanthrope. Bots are only as good as their design; making sure they stay on message and don’t act in unexpected ways is crucial.

SAP Q417 DigitalDoubles Feature1 Image3 How FMCG Firms Are Transforming DigitallyThis is especially true in healthcare. When chatbots are offering therapeutic services, they must be properly designed, vetted, and tested to maintain patient safety.

It may be prudent to apply the same level of caution to a business setting. By treating chatbots as if they’re akin to medicine or drugs, we have a model for thorough vetting that, while not perfect, is generally effective and time tested.

It may seem like overkill to think of chatbots that manage pizza orders or help resolve parking tickets as potential health threats. But it’s already clear that AI can have unintended side effects that could extend far beyond Tay’s loathsome behavior.

For example, in July, Facebook shut down an experiment where it challenged two AIs to negotiate with each other over a trade. When the experiment began, the two chatbots quickly went rogue, developing linguistic shortcuts to reduce negotiating time and leaving their creators unable to understand what they were saying.

The implications are chilling. Do we want AIs interacting in a secret language because designers didn’t fully understand what they were designing?

In this context, the healthcare community’s conservative approach doesn’t seem so farfetched. Woebot could ultimately become an example of the kind of oversight that’s needed for all AIs.

Meanwhile, it’s clear that chatbots have great potential in healthcare—not just for treating mental health issues but for helping patients understand symptoms, build treatment regimens, and more. They could also help unclog barriers to healthcare, which is plagued worldwide by high prices, long wait times, and other challenges. While they are not a substitute for actual humans, chatbots can be used by anyone with a computer or smartphone, 24 hours a day, seven days a week, regardless of financial status.

Finding the right governance for AI development won’t happen overnight. But peer review, extensive internal quality analysis, and other processes will go a long way to ensuring bots function as expected. Otherwise, companies and their customers could pay a big price.

SAP Q417 DigitalDoubles Feature1 Image4 1024x572 How FMCG Firms Are Transforming Digitally

Elon Musk is an expert at dominating the news cycle with his sci-fi premonitions about space travel and high-speed hyperloops. However, he captured media attention in Australia in April 2017 for something much more down to earth: how to deal with blackouts and power outages.

In 2016, a massive blackout hit the state of South Australia following a storm. Although power was restored quickly in Adelaide, the capital, people in the wide stretches of arid desert that surround it spent days waiting for the power to return. That hit South Australia’s wine and livestock industries especially hard.

South Australia’s electrical grid currently gets more than half of its energy from wind and solar, with coal and gas plants acting as backups for when the sun hides or the wind doesn’t blow, according to ABC News Australia. But this network is vulnerable to sudden loss of generation—which is exactly what happened in the storm that caused the 2016 blackout, when tornadoes ripped through some key transmission lines. Getting the system back on stable footing has been an issue ever since.

Displaying his usual talent for showmanship, Musk stepped in and promised to build the world’s largest battery to store backup energy for the network—and he pledged to complete it within 100 days of signing the contract or the battery would be free. Pen met paper with South Australia and French utility Neoen in September. As of press time in November, construction was underway.

For South Australia, the Tesla deal offers an easy and secure way to store renewable energy. Tesla’s 129 MWh battery will be the most powerful battery system in the world by 60% once completed, according to Gizmodo. The battery, which is stationed at a wind farm, will cover temporary drops in wind power and kick in to help conventional gas and coal plants balance generation with demand across the network. South Australian citizens and politicians largely support the project, which Tesla claims will be able to power 30,000 homes.

Until Musk made his bold promise, batteries did not figure much in renewable energy networks, mostly because they just aren’t that good. They have limited charges, are difficult to build, and are difficult to manage. Utilities also worry about relying on the same lithium-ion battery technology as cellphone makers like Samsung, whose Galaxy Note 7 had to be recalled in 2016 after some defective batteries burst into flames, according to CNET.

SAP Q417 DigitalDoubles Feature1 Image5 How FMCG Firms Are Transforming DigitallyHowever, when made right, the batteries are safe. It’s just that they’ve traditionally been too expensive for large-scale uses such as renewable power storage. But battery innovations such as Tesla’s could radically change how we power the economy. According to a study that appeared this year in Nature, the continued drop in the cost of battery storage has made renewable energy price-competitive with traditional fossil fuels.

This is a massive shift. Or, as David Roberts of news site Vox puts it, “Batteries are soon going to disrupt power markets at all scales.” Furthermore, if the cost of batteries continues to drop, supply chains could experience radical energy cost savings. This could disrupt energy utilities, manufacturing, transportation, and construction, to name just a few, and create many opportunities while changing established business models. (For more on how renewable energy will affect business, read the feature “Tick Tock” in this issue.)

Battery research and development has become big business. Thanks to electric cars and powerful smartphones, there has been incredible pressure to make more powerful batteries that last longer between charges.

The proof of this is in the R&D funding pudding. A Brookings Institution report notes that both the Chinese and U.S. governments offer generous subsidies for lithium-ion battery advancement. Automakers such as Daimler and BMW have established divisions marketing residential and commercial energy storage products. Boeing, Airbus, Rolls-Royce, and General Electric are all experimenting with various electric propulsion systems for aircraft—which means that hybrid airplanes are also a possibility.

Meanwhile, governments around the world are accelerating battery research investment by banning internal combustion vehicles. Britain, France, India, and Norway are seeking to go all electric as early as 2025 and by 2040 at the latest.

In the meantime, expect huge investment and new battery innovation from interested parties across industries that all share a stake in the outcome. This past September, for example, Volkswagen announced a €50 billion research investment in batteries to help bring 300 electric vehicle models to market by 2030.

SAP Q417 DigitalDoubles Feature1 Image6 1024x572 How FMCG Firms Are Transforming Digitally

At first, it sounds like a narrative device from a science fiction novel or a particularly bad urban legend.

Powerful cameras in several Chinese cities capture photographs of jaywalkers as they cross the street and, several minutes later, display their photograph, name, and home address on a large screen posted at the intersection. Several days later, a summons appears in the offender’s mailbox demanding payment of a fine or fulfillment of community service.

As Orwellian as it seems, this technology is very real for residents of Jinan and several other Chinese cities. According to a Xinhua interview with Li Yong of the Jinan traffic police, “Since the new technology has been adopted, the cases of jaywalking have been reduced from 200 to 20 each day at the major intersection of Jingshi and Shungeng roads.”

The sophisticated cameras and facial recognition systems already used in China—and their near–real-time public shaming—are an example of how machine learning, mobile phone surveillance, and internet activity tracking are being used to censor and control populations. Most worryingly, the prospect of real-time surveillance makes running surveillance states such as the former East Germany and current North Korea much more financially efficient.

According to a 2015 discussion paper by the Institute for the Study of Labor, a German research center, by the 1980s almost 0.5% of the East German population was directly employed by the Stasi, the country’s state security service and secret police—1 for every 166 citizens. An additional 1.1% of the population (1 for every 66 citizens) were working as unofficial informers, which represented a massive economic drain. Automated, real-time, algorithm-driven monitoring could potentially drive the cost of controlling the population down substantially in police states—and elsewhere.

We could see a radical new era of censorship that is much more manipulative than anything that has come before. Previously, dissidents were identified when investigators manually combed through photos, read writings, or listened in on phone calls. Real-time algorithmic monitoring means that acts of perceived defiance can be identified and deleted in the moment and their perpetrators marked for swift judgment before they can make an impression on others.

SAP Q417 DigitalDoubles Feature1 Image7 How FMCG Firms Are Transforming DigitallyBusinesses need to be aware of the wider trend toward real-time, automated censorship and how it might be used in both commercial and governmental settings. These tools can easily be used in countries with unstable political dynamics and could become a real concern for businesses that operate across borders. Businesses must learn to educate and protect employees when technology can censor and punish in real time.

Indeed, the technologies used for this kind of repression could be easily adapted from those that have already been developed for businesses. For instance, both Facebook and Google use near–real-time facial identification algorithms that automatically identify people in images uploaded by users—which helps the companies build out their social graphs and target users with profitable advertisements. Automated algorithms also flag Facebook posts that potentially violate the company’s terms of service.

China is already using these technologies to control its own people in ways that are largely hidden to outsiders.

According to a report by the University of Toronto’s Citizen Lab, the popular Chinese social network WeChat operates under a policy its authors call “One App, Two Systems.” Users with Chinese phone numbers are subjected to dynamic keyword censorship that changes depending on current events and whether a user is in a private chat or in a group. Depending on the political winds, users are blocked from accessing a range of websites that report critically on China through WeChat’s internal browser. Non-Chinese users, however, are not subject to any of these restrictions.

The censorship is also designed to be invisible. Messages are blocked without any user notification, and China has intermittently blocked WhatsApp and other foreign social networks. As a result, Chinese users are steered toward national social networks, which are more compliant with government pressure.

China’s policies play into a larger global trend: the nationalization of the internet. China, Russia, the European Union, and the United States have all adopted different approaches to censorship, user privacy, and surveillance. Although there are social networks such as WeChat or Russia’s VKontakte that are popular in primarily one country, nationalizing the internet challenges users of multinational services such as Facebook and YouTube. These different approaches, which impact everything from data safe harbor laws to legal consequences for posting inflammatory material, have implications for businesses working in multiple countries, as well.

For instance, Twitter is legally obligated to hide Nazi and neo-fascist imagery and some tweets in Germany and France—but not elsewhere. YouTube was officially banned in Turkey for two years because of videos a Turkish court deemed “insulting to the memory of Mustafa Kemal Atatürk,” father of modern Turkey. In Russia, Google must keep Russian users’ personal data on servers located inside Russia to comply with government policy.

While China is a pioneer in the field of instant censorship, tech companies in the United States are matching China’s progress, which could potentially have a chilling effect on democracy. In 2016, Apple applied for a patent on technology that censors audio streams in real time—automating the previously manual process of censoring curse words in streaming audio.

SAP Q417 DigitalDoubles Feature1 Image8 1024x572 How FMCG Firms Are Transforming Digitally

In March, after U.S. President Donald Trump told Fox News, “I think maybe I wouldn’t be [president] if it wasn’t for Twitter,” Twitter founder Evan “Ev” Williams did something highly unusual for the creator of a massive social network.

He apologized.

Speaking with David Streitfeld of The New York Times, Williams said, “It’s a very bad thing, Twitter’s role in that. If it’s true that he wouldn’t be president if it weren’t for Twitter, then yeah, I’m sorry.”

Entrepreneurs tend to be very proud of their innovations. Williams, however, offers a far more ambivalent response to his creation’s success. Much of the 2016 presidential election’s rancor was fueled by Twitter, and the instant gratification of Twitter attracts trolls, bullies, and bigots just as easily as it attracts politicians, celebrities, comedians, and sports fans.

Services such as Twitter, Facebook, YouTube, and Instagram are designed through a mix of look and feel, algorithmic wizardry, and psychological techniques to hang on to users for as long as possible—which helps the services sell more advertisements and make more money. Toxic political discourse and online harassment are unintended side effects of the economic-driven urge to keep users engaged no matter what.

Keeping users’ eyeballs on their screens requires endless hours of multivariate testing, user research, and algorithm refinement. For instance, Casey Newton of tech publication The Verge notes that Google Brain, Google’s AI division, plays a key part in generating YouTube’s video recommendations.

According to Jim McFadden, the technical lead for YouTube recommendations, “Before, if I watch this video from a comedian, our recommendations were pretty good at saying, here’s another one just like it,” he told Newton. “But the Google Brain model figures out other comedians who are similar but not exactly the same—even more adjacent relationships. It’s able to see patterns that are less obvious.”

SAP Q417 DigitalDoubles Feature1 Image9 How FMCG Firms Are Transforming DigitallyA never-ending flow of content that is interesting without being repetitive is harder to resist. With users glued to online services, addiction and other behavioral problems occur to an unhealthy degree. According to a 2016 poll by nonprofit research company Common Sense Media, 50% of American teenagers believe they are addicted to their smartphones.

This pattern is extending into the workplace. Seventy-five percent of companies told research company Harris Poll in 2016 that two or more hours a day are lost in productivity because employees are distracted. The number one reason? Cellphones and texting, according to 55% of those companies surveyed. Another 41% pointed to the internet.

Tristan Harris, a former design ethicist at Google, argues that many product designers for online services try to exploit psychological vulnerabilities in a bid to keep users engaged for longer periods. Harris refers to an iPhone as “a slot machine in my pocket” and argues that user interface (UI) and user experience (UX) designers need to adopt something akin to a Hippocratic Oath to stop exploiting users’ psychological vulnerabilities.

In fact, there is an entire school of study devoted to “dark UX”—small design tweaks to increase profits. These can be as innocuous as a “Buy Now” button in a visually pleasing color or as controversial as when Facebook tweaked its algorithm in 2012 to show a randomly selected group of almost 700,000 users (who had not given their permission) newsfeeds that skewed more positive to some users and more negative to others to gauge the impact on their respective emotional states, according to an article in Wired.

As computers, smartphones, and televisions come ever closer to convergence, these issues matter increasingly to businesses. Some of the universal side effects of addiction are lost productivity at work and poor health. Businesses should offer training and help for employees who can’t stop checking their smartphones.

Mindfulness-centered mobile apps such as Headspace, Calm, and Forest offer one way to break the habit. Users can also choose to break internet addiction by going for a walk, turning their computers off, or using tools like StayFocusd or Freedom to block addictive websites or apps.

Most importantly, companies in the business of creating tech products need to design software and hardware that discourages addictive behavior. This means avoiding bad designs that emphasize engagement metrics over human health. A world of advertising preroll showing up on smart refrigerator touchscreens at 2 a.m. benefits no one.

According to a 2014 study in Cyberpsychology, Behavior and Social Networking, approximately 6% of the world’s population suffers from internet addiction to one degree or another. As more users in emerging economies gain access to cheap data, smartphones, and laptops, that percentage will only increase. For businesses, getting a head start on stopping internet addiction will make employees happier and more productive. D!


About the Authors

Maurizio Cattaneo is Director, Delivery Execution, Energy, and Natural Resources, at SAP.

David Delaney is Global Vice President and Chief Medical Officer, SAP Health.

Volker Hildebrand is Global Vice President for SAP Hybris solutions.

Neal Ungerleider is a Los Angeles-based technology journalist and consultant.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Let’s block ads! (Why?)

Digitalist Magazine

The Promise Of Drones And Machine Learning For Oil And Gas Industry

In the tech world in 2017, several trends emerged as signals amid the noise, signifying much larger changes to come.

As we noted in last year’s More Than Noise list, things are changing—and the changes are occurring in ways that don’t necessarily fit into the prevailing narrative.

While many of 2017’s signals have a dark tint to them, perhaps reflecting the times we live in, we have sought out some rays of light to illuminate the way forward. The following signals differ considerably, but understanding them can help guide businesses in the right direction for 2018 and beyond.

SAP Q417 DigitalDoubles Feature1 Image2 1024x572 The Promise Of Drones And Machine Learning For Oil And Gas Industry

When a team of psychologists, linguists, and software engineers created Woebot, an AI chatbot that helps people learn cognitive behavioral therapy techniques for managing mental health issues like anxiety and depression, they did something unusual, at least when it comes to chatbots: they submitted it for peer review.

Stanford University researchers recruited a sample group of 70 college-age participants on social media to take part in a randomized control study of Woebot. The researchers found that their creation was useful for improving anxiety and depression symptoms. A study of the user interaction with the bot was submitted for peer review and published in the Journal of Medical Internet Research Mental Health in June 2017.

While Woebot may not revolutionize the field of psychology, it could change the way we view AI development. Well-known figures such as Elon Musk and Bill Gates have expressed concerns that artificial intelligence is essentially ungovernable. Peer review, such as with the Stanford study, is one way to approach this challenge and figure out how to properly evaluate and find a place for these software programs.

The healthcare community could be onto something. We’ve already seen instances where AI chatbots have spun out of control, such as when internet trolls trained Microsoft’s Tay to become a hate-spewing misanthrope. Bots are only as good as their design; making sure they stay on message and don’t act in unexpected ways is crucial.

SAP Q417 DigitalDoubles Feature1 Image3 The Promise Of Drones And Machine Learning For Oil And Gas IndustryThis is especially true in healthcare. When chatbots are offering therapeutic services, they must be properly designed, vetted, and tested to maintain patient safety.

It may be prudent to apply the same level of caution to a business setting. By treating chatbots as if they’re akin to medicine or drugs, we have a model for thorough vetting that, while not perfect, is generally effective and time tested.

It may seem like overkill to think of chatbots that manage pizza orders or help resolve parking tickets as potential health threats. But it’s already clear that AI can have unintended side effects that could extend far beyond Tay’s loathsome behavior.

For example, in July, Facebook shut down an experiment where it challenged two AIs to negotiate with each other over a trade. When the experiment began, the two chatbots quickly went rogue, developing linguistic shortcuts to reduce negotiating time and leaving their creators unable to understand what they were saying.

The implications are chilling. Do we want AIs interacting in a secret language because designers didn’t fully understand what they were designing?

In this context, the healthcare community’s conservative approach doesn’t seem so farfetched. Woebot could ultimately become an example of the kind of oversight that’s needed for all AIs.

Meanwhile, it’s clear that chatbots have great potential in healthcare—not just for treating mental health issues but for helping patients understand symptoms, build treatment regimens, and more. They could also help unclog barriers to healthcare, which is plagued worldwide by high prices, long wait times, and other challenges. While they are not a substitute for actual humans, chatbots can be used by anyone with a computer or smartphone, 24 hours a day, seven days a week, regardless of financial status.

Finding the right governance for AI development won’t happen overnight. But peer review, extensive internal quality analysis, and other processes will go a long way to ensuring bots function as expected. Otherwise, companies and their customers could pay a big price.

SAP Q417 DigitalDoubles Feature1 Image4 1024x572 The Promise Of Drones And Machine Learning For Oil And Gas Industry

Elon Musk is an expert at dominating the news cycle with his sci-fi premonitions about space travel and high-speed hyperloops. However, he captured media attention in Australia in April 2017 for something much more down to earth: how to deal with blackouts and power outages.

In 2016, a massive blackout hit the state of South Australia following a storm. Although power was restored quickly in Adelaide, the capital, people in the wide stretches of arid desert that surround it spent days waiting for the power to return. That hit South Australia’s wine and livestock industries especially hard.

South Australia’s electrical grid currently gets more than half of its energy from wind and solar, with coal and gas plants acting as backups for when the sun hides or the wind doesn’t blow, according to ABC News Australia. But this network is vulnerable to sudden loss of generation—which is exactly what happened in the storm that caused the 2016 blackout, when tornadoes ripped through some key transmission lines. Getting the system back on stable footing has been an issue ever since.

Displaying his usual talent for showmanship, Musk stepped in and promised to build the world’s largest battery to store backup energy for the network—and he pledged to complete it within 100 days of signing the contract or the battery would be free. Pen met paper with South Australia and French utility Neoen in September. As of press time in November, construction was underway.

For South Australia, the Tesla deal offers an easy and secure way to store renewable energy. Tesla’s 129 MWh battery will be the most powerful battery system in the world by 60% once completed, according to Gizmodo. The battery, which is stationed at a wind farm, will cover temporary drops in wind power and kick in to help conventional gas and coal plants balance generation with demand across the network. South Australian citizens and politicians largely support the project, which Tesla claims will be able to power 30,000 homes.

Until Musk made his bold promise, batteries did not figure much in renewable energy networks, mostly because they just aren’t that good. They have limited charges, are difficult to build, and are difficult to manage. Utilities also worry about relying on the same lithium-ion battery technology as cellphone makers like Samsung, whose Galaxy Note 7 had to be recalled in 2016 after some defective batteries burst into flames, according to CNET.

SAP Q417 DigitalDoubles Feature1 Image5 The Promise Of Drones And Machine Learning For Oil And Gas IndustryHowever, when made right, the batteries are safe. It’s just that they’ve traditionally been too expensive for large-scale uses such as renewable power storage. But battery innovations such as Tesla’s could radically change how we power the economy. According to a study that appeared this year in Nature, the continued drop in the cost of battery storage has made renewable energy price-competitive with traditional fossil fuels.

This is a massive shift. Or, as David Roberts of news site Vox puts it, “Batteries are soon going to disrupt power markets at all scales.” Furthermore, if the cost of batteries continues to drop, supply chains could experience radical energy cost savings. This could disrupt energy utilities, manufacturing, transportation, and construction, to name just a few, and create many opportunities while changing established business models. (For more on how renewable energy will affect business, read the feature “Tick Tock” in this issue.)

Battery research and development has become big business. Thanks to electric cars and powerful smartphones, there has been incredible pressure to make more powerful batteries that last longer between charges.

The proof of this is in the R&D funding pudding. A Brookings Institution report notes that both the Chinese and U.S. governments offer generous subsidies for lithium-ion battery advancement. Automakers such as Daimler and BMW have established divisions marketing residential and commercial energy storage products. Boeing, Airbus, Rolls-Royce, and General Electric are all experimenting with various electric propulsion systems for aircraft—which means that hybrid airplanes are also a possibility.

Meanwhile, governments around the world are accelerating battery research investment by banning internal combustion vehicles. Britain, France, India, and Norway are seeking to go all electric as early as 2025 and by 2040 at the latest.

In the meantime, expect huge investment and new battery innovation from interested parties across industries that all share a stake in the outcome. This past September, for example, Volkswagen announced a €50 billion research investment in batteries to help bring 300 electric vehicle models to market by 2030.

SAP Q417 DigitalDoubles Feature1 Image6 1024x572 The Promise Of Drones And Machine Learning For Oil And Gas Industry

At first, it sounds like a narrative device from a science fiction novel or a particularly bad urban legend.

Powerful cameras in several Chinese cities capture photographs of jaywalkers as they cross the street and, several minutes later, display their photograph, name, and home address on a large screen posted at the intersection. Several days later, a summons appears in the offender’s mailbox demanding payment of a fine or fulfillment of community service.

As Orwellian as it seems, this technology is very real for residents of Jinan and several other Chinese cities. According to a Xinhua interview with Li Yong of the Jinan traffic police, “Since the new technology has been adopted, the cases of jaywalking have been reduced from 200 to 20 each day at the major intersection of Jingshi and Shungeng roads.”

The sophisticated cameras and facial recognition systems already used in China—and their near–real-time public shaming—are an example of how machine learning, mobile phone surveillance, and internet activity tracking are being used to censor and control populations. Most worryingly, the prospect of real-time surveillance makes running surveillance states such as the former East Germany and current North Korea much more financially efficient.

According to a 2015 discussion paper by the Institute for the Study of Labor, a German research center, by the 1980s almost 0.5% of the East German population was directly employed by the Stasi, the country’s state security service and secret police—1 for every 166 citizens. An additional 1.1% of the population (1 for every 66 citizens) were working as unofficial informers, which represented a massive economic drain. Automated, real-time, algorithm-driven monitoring could potentially drive the cost of controlling the population down substantially in police states—and elsewhere.

We could see a radical new era of censorship that is much more manipulative than anything that has come before. Previously, dissidents were identified when investigators manually combed through photos, read writings, or listened in on phone calls. Real-time algorithmic monitoring means that acts of perceived defiance can be identified and deleted in the moment and their perpetrators marked for swift judgment before they can make an impression on others.

SAP Q417 DigitalDoubles Feature1 Image7 The Promise Of Drones And Machine Learning For Oil And Gas IndustryBusinesses need to be aware of the wider trend toward real-time, automated censorship and how it might be used in both commercial and governmental settings. These tools can easily be used in countries with unstable political dynamics and could become a real concern for businesses that operate across borders. Businesses must learn to educate and protect employees when technology can censor and punish in real time.

Indeed, the technologies used for this kind of repression could be easily adapted from those that have already been developed for businesses. For instance, both Facebook and Google use near–real-time facial identification algorithms that automatically identify people in images uploaded by users—which helps the companies build out their social graphs and target users with profitable advertisements. Automated algorithms also flag Facebook posts that potentially violate the company’s terms of service.

China is already using these technologies to control its own people in ways that are largely hidden to outsiders.

According to a report by the University of Toronto’s Citizen Lab, the popular Chinese social network WeChat operates under a policy its authors call “One App, Two Systems.” Users with Chinese phone numbers are subjected to dynamic keyword censorship that changes depending on current events and whether a user is in a private chat or in a group. Depending on the political winds, users are blocked from accessing a range of websites that report critically on China through WeChat’s internal browser. Non-Chinese users, however, are not subject to any of these restrictions.

The censorship is also designed to be invisible. Messages are blocked without any user notification, and China has intermittently blocked WhatsApp and other foreign social networks. As a result, Chinese users are steered toward national social networks, which are more compliant with government pressure.

China’s policies play into a larger global trend: the nationalization of the internet. China, Russia, the European Union, and the United States have all adopted different approaches to censorship, user privacy, and surveillance. Although there are social networks such as WeChat or Russia’s VKontakte that are popular in primarily one country, nationalizing the internet challenges users of multinational services such as Facebook and YouTube. These different approaches, which impact everything from data safe harbor laws to legal consequences for posting inflammatory material, have implications for businesses working in multiple countries, as well.

For instance, Twitter is legally obligated to hide Nazi and neo-fascist imagery and some tweets in Germany and France—but not elsewhere. YouTube was officially banned in Turkey for two years because of videos a Turkish court deemed “insulting to the memory of Mustafa Kemal Atatürk,” father of modern Turkey. In Russia, Google must keep Russian users’ personal data on servers located inside Russia to comply with government policy.

While China is a pioneer in the field of instant censorship, tech companies in the United States are matching China’s progress, which could potentially have a chilling effect on democracy. In 2016, Apple applied for a patent on technology that censors audio streams in real time—automating the previously manual process of censoring curse words in streaming audio.

SAP Q417 DigitalDoubles Feature1 Image8 1024x572 The Promise Of Drones And Machine Learning For Oil And Gas Industry

In March, after U.S. President Donald Trump told Fox News, “I think maybe I wouldn’t be [president] if it wasn’t for Twitter,” Twitter founder Evan “Ev” Williams did something highly unusual for the creator of a massive social network.

He apologized.

Speaking with David Streitfeld of The New York Times, Williams said, “It’s a very bad thing, Twitter’s role in that. If it’s true that he wouldn’t be president if it weren’t for Twitter, then yeah, I’m sorry.”

Entrepreneurs tend to be very proud of their innovations. Williams, however, offers a far more ambivalent response to his creation’s success. Much of the 2016 presidential election’s rancor was fueled by Twitter, and the instant gratification of Twitter attracts trolls, bullies, and bigots just as easily as it attracts politicians, celebrities, comedians, and sports fans.

Services such as Twitter, Facebook, YouTube, and Instagram are designed through a mix of look and feel, algorithmic wizardry, and psychological techniques to hang on to users for as long as possible—which helps the services sell more advertisements and make more money. Toxic political discourse and online harassment are unintended side effects of the economic-driven urge to keep users engaged no matter what.

Keeping users’ eyeballs on their screens requires endless hours of multivariate testing, user research, and algorithm refinement. For instance, Casey Newton of tech publication The Verge notes that Google Brain, Google’s AI division, plays a key part in generating YouTube’s video recommendations.

According to Jim McFadden, the technical lead for YouTube recommendations, “Before, if I watch this video from a comedian, our recommendations were pretty good at saying, here’s another one just like it,” he told Newton. “But the Google Brain model figures out other comedians who are similar but not exactly the same—even more adjacent relationships. It’s able to see patterns that are less obvious.”

SAP Q417 DigitalDoubles Feature1 Image9 The Promise Of Drones And Machine Learning For Oil And Gas IndustryA never-ending flow of content that is interesting without being repetitive is harder to resist. With users glued to online services, addiction and other behavioral problems occur to an unhealthy degree. According to a 2016 poll by nonprofit research company Common Sense Media, 50% of American teenagers believe they are addicted to their smartphones.

This pattern is extending into the workplace. Seventy-five percent of companies told research company Harris Poll in 2016 that two or more hours a day are lost in productivity because employees are distracted. The number one reason? Cellphones and texting, according to 55% of those companies surveyed. Another 41% pointed to the internet.

Tristan Harris, a former design ethicist at Google, argues that many product designers for online services try to exploit psychological vulnerabilities in a bid to keep users engaged for longer periods. Harris refers to an iPhone as “a slot machine in my pocket” and argues that user interface (UI) and user experience (UX) designers need to adopt something akin to a Hippocratic Oath to stop exploiting users’ psychological vulnerabilities.

In fact, there is an entire school of study devoted to “dark UX”—small design tweaks to increase profits. These can be as innocuous as a “Buy Now” button in a visually pleasing color or as controversial as when Facebook tweaked its algorithm in 2012 to show a randomly selected group of almost 700,000 users (who had not given their permission) newsfeeds that skewed more positive to some users and more negative to others to gauge the impact on their respective emotional states, according to an article in Wired.

As computers, smartphones, and televisions come ever closer to convergence, these issues matter increasingly to businesses. Some of the universal side effects of addiction are lost productivity at work and poor health. Businesses should offer training and help for employees who can’t stop checking their smartphones.

Mindfulness-centered mobile apps such as Headspace, Calm, and Forest offer one way to break the habit. Users can also choose to break internet addiction by going for a walk, turning their computers off, or using tools like StayFocusd or Freedom to block addictive websites or apps.

Most importantly, companies in the business of creating tech products need to design software and hardware that discourages addictive behavior. This means avoiding bad designs that emphasize engagement metrics over human health. A world of advertising preroll showing up on smart refrigerator touchscreens at 2 a.m. benefits no one.

According to a 2014 study in Cyberpsychology, Behavior and Social Networking, approximately 6% of the world’s population suffers from internet addiction to one degree or another. As more users in emerging economies gain access to cheap data, smartphones, and laptops, that percentage will only increase. For businesses, getting a head start on stopping internet addiction will make employees happier and more productive. D!


About the Authors

Maurizio Cattaneo is Director, Delivery Execution, Energy, and Natural Resources, at SAP.

David Delaney is Global Vice President and Chief Medical Officer, SAP Health.

Volker Hildebrand is Global Vice President for SAP Hybris solutions.

Neal Ungerleider is a Los Angeles-based technology journalist and consultant.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Let’s block ads! (Why?)

Digitalist Magazine

AI Won’t Save Us From Pointless Jobs Unless We Let It

In the tech world in 2017, several trends emerged as signals amid the noise, signifying much larger changes to come.

As we noted in last year’s More Than Noise list, things are changing—and the changes are occurring in ways that don’t necessarily fit into the prevailing narrative.

While many of 2017’s signals have a dark tint to them, perhaps reflecting the times we live in, we have sought out some rays of light to illuminate the way forward. The following signals differ considerably, but understanding them can help guide businesses in the right direction for 2018 and beyond.

SAP Q417 DigitalDoubles Feature1 Image2 1024x572 AI Won’t Save Us From Pointless Jobs Unless We Let It

When a team of psychologists, linguists, and software engineers created Woebot, an AI chatbot that helps people learn cognitive behavioral therapy techniques for managing mental health issues like anxiety and depression, they did something unusual, at least when it comes to chatbots: they submitted it for peer review.

Stanford University researchers recruited a sample group of 70 college-age participants on social media to take part in a randomized control study of Woebot. The researchers found that their creation was useful for improving anxiety and depression symptoms. A study of the user interaction with the bot was submitted for peer review and published in the Journal of Medical Internet Research Mental Health in June 2017.

While Woebot may not revolutionize the field of psychology, it could change the way we view AI development. Well-known figures such as Elon Musk and Bill Gates have expressed concerns that artificial intelligence is essentially ungovernable. Peer review, such as with the Stanford study, is one way to approach this challenge and figure out how to properly evaluate and find a place for these software programs.

The healthcare community could be onto something. We’ve already seen instances where AI chatbots have spun out of control, such as when internet trolls trained Microsoft’s Tay to become a hate-spewing misanthrope. Bots are only as good as their design; making sure they stay on message and don’t act in unexpected ways is crucial.

SAP Q417 DigitalDoubles Feature1 Image3 AI Won’t Save Us From Pointless Jobs Unless We Let ItThis is especially true in healthcare. When chatbots are offering therapeutic services, they must be properly designed, vetted, and tested to maintain patient safety.

It may be prudent to apply the same level of caution to a business setting. By treating chatbots as if they’re akin to medicine or drugs, we have a model for thorough vetting that, while not perfect, is generally effective and time tested.

It may seem like overkill to think of chatbots that manage pizza orders or help resolve parking tickets as potential health threats. But it’s already clear that AI can have unintended side effects that could extend far beyond Tay’s loathsome behavior.

For example, in July, Facebook shut down an experiment where it challenged two AIs to negotiate with each other over a trade. When the experiment began, the two chatbots quickly went rogue, developing linguistic shortcuts to reduce negotiating time and leaving their creators unable to understand what they were saying.

The implications are chilling. Do we want AIs interacting in a secret language because designers didn’t fully understand what they were designing?

In this context, the healthcare community’s conservative approach doesn’t seem so farfetched. Woebot could ultimately become an example of the kind of oversight that’s needed for all AIs.

Meanwhile, it’s clear that chatbots have great potential in healthcare—not just for treating mental health issues but for helping patients understand symptoms, build treatment regimens, and more. They could also help unclog barriers to healthcare, which is plagued worldwide by high prices, long wait times, and other challenges. While they are not a substitute for actual humans, chatbots can be used by anyone with a computer or smartphone, 24 hours a day, seven days a week, regardless of financial status.

Finding the right governance for AI development won’t happen overnight. But peer review, extensive internal quality analysis, and other processes will go a long way to ensuring bots function as expected. Otherwise, companies and their customers could pay a big price.

SAP Q417 DigitalDoubles Feature1 Image4 1024x572 AI Won’t Save Us From Pointless Jobs Unless We Let It

Elon Musk is an expert at dominating the news cycle with his sci-fi premonitions about space travel and high-speed hyperloops. However, he captured media attention in Australia in April 2017 for something much more down to earth: how to deal with blackouts and power outages.

In 2016, a massive blackout hit the state of South Australia following a storm. Although power was restored quickly in Adelaide, the capital, people in the wide stretches of arid desert that surround it spent days waiting for the power to return. That hit South Australia’s wine and livestock industries especially hard.

South Australia’s electrical grid currently gets more than half of its energy from wind and solar, with coal and gas plants acting as backups for when the sun hides or the wind doesn’t blow, according to ABC News Australia. But this network is vulnerable to sudden loss of generation—which is exactly what happened in the storm that caused the 2016 blackout, when tornadoes ripped through some key transmission lines. Getting the system back on stable footing has been an issue ever since.

Displaying his usual talent for showmanship, Musk stepped in and promised to build the world’s largest battery to store backup energy for the network—and he pledged to complete it within 100 days of signing the contract or the battery would be free. Pen met paper with South Australia and French utility Neoen in September. As of press time in November, construction was underway.

For South Australia, the Tesla deal offers an easy and secure way to store renewable energy. Tesla’s 129 MWh battery will be the most powerful battery system in the world by 60% once completed, according to Gizmodo. The battery, which is stationed at a wind farm, will cover temporary drops in wind power and kick in to help conventional gas and coal plants balance generation with demand across the network. South Australian citizens and politicians largely support the project, which Tesla claims will be able to power 30,000 homes.

Until Musk made his bold promise, batteries did not figure much in renewable energy networks, mostly because they just aren’t that good. They have limited charges, are difficult to build, and are difficult to manage. Utilities also worry about relying on the same lithium-ion battery technology as cellphone makers like Samsung, whose Galaxy Note 7 had to be recalled in 2016 after some defective batteries burst into flames, according to CNET.

SAP Q417 DigitalDoubles Feature1 Image5 AI Won’t Save Us From Pointless Jobs Unless We Let ItHowever, when made right, the batteries are safe. It’s just that they’ve traditionally been too expensive for large-scale uses such as renewable power storage. But battery innovations such as Tesla’s could radically change how we power the economy. According to a study that appeared this year in Nature, the continued drop in the cost of battery storage has made renewable energy price-competitive with traditional fossil fuels.

This is a massive shift. Or, as David Roberts of news site Vox puts it, “Batteries are soon going to disrupt power markets at all scales.” Furthermore, if the cost of batteries continues to drop, supply chains could experience radical energy cost savings. This could disrupt energy utilities, manufacturing, transportation, and construction, to name just a few, and create many opportunities while changing established business models. (For more on how renewable energy will affect business, read the feature “Tick Tock” in this issue.)

Battery research and development has become big business. Thanks to electric cars and powerful smartphones, there has been incredible pressure to make more powerful batteries that last longer between charges.

The proof of this is in the R&D funding pudding. A Brookings Institution report notes that both the Chinese and U.S. governments offer generous subsidies for lithium-ion battery advancement. Automakers such as Daimler and BMW have established divisions marketing residential and commercial energy storage products. Boeing, Airbus, Rolls-Royce, and General Electric are all experimenting with various electric propulsion systems for aircraft—which means that hybrid airplanes are also a possibility.

Meanwhile, governments around the world are accelerating battery research investment by banning internal combustion vehicles. Britain, France, India, and Norway are seeking to go all electric as early as 2025 and by 2040 at the latest.

In the meantime, expect huge investment and new battery innovation from interested parties across industries that all share a stake in the outcome. This past September, for example, Volkswagen announced a €50 billion research investment in batteries to help bring 300 electric vehicle models to market by 2030.

SAP Q417 DigitalDoubles Feature1 Image6 1024x572 AI Won’t Save Us From Pointless Jobs Unless We Let It

At first, it sounds like a narrative device from a science fiction novel or a particularly bad urban legend.

Powerful cameras in several Chinese cities capture photographs of jaywalkers as they cross the street and, several minutes later, display their photograph, name, and home address on a large screen posted at the intersection. Several days later, a summons appears in the offender’s mailbox demanding payment of a fine or fulfillment of community service.

As Orwellian as it seems, this technology is very real for residents of Jinan and several other Chinese cities. According to a Xinhua interview with Li Yong of the Jinan traffic police, “Since the new technology has been adopted, the cases of jaywalking have been reduced from 200 to 20 each day at the major intersection of Jingshi and Shungeng roads.”

The sophisticated cameras and facial recognition systems already used in China—and their near–real-time public shaming—are an example of how machine learning, mobile phone surveillance, and internet activity tracking are being used to censor and control populations. Most worryingly, the prospect of real-time surveillance makes running surveillance states such as the former East Germany and current North Korea much more financially efficient.

According to a 2015 discussion paper by the Institute for the Study of Labor, a German research center, by the 1980s almost 0.5% of the East German population was directly employed by the Stasi, the country’s state security service and secret police—1 for every 166 citizens. An additional 1.1% of the population (1 for every 66 citizens) were working as unofficial informers, which represented a massive economic drain. Automated, real-time, algorithm-driven monitoring could potentially drive the cost of controlling the population down substantially in police states—and elsewhere.

We could see a radical new era of censorship that is much more manipulative than anything that has come before. Previously, dissidents were identified when investigators manually combed through photos, read writings, or listened in on phone calls. Real-time algorithmic monitoring means that acts of perceived defiance can be identified and deleted in the moment and their perpetrators marked for swift judgment before they can make an impression on others.

SAP Q417 DigitalDoubles Feature1 Image7 AI Won’t Save Us From Pointless Jobs Unless We Let ItBusinesses need to be aware of the wider trend toward real-time, automated censorship and how it might be used in both commercial and governmental settings. These tools can easily be used in countries with unstable political dynamics and could become a real concern for businesses that operate across borders. Businesses must learn to educate and protect employees when technology can censor and punish in real time.

Indeed, the technologies used for this kind of repression could be easily adapted from those that have already been developed for businesses. For instance, both Facebook and Google use near–real-time facial identification algorithms that automatically identify people in images uploaded by users—which helps the companies build out their social graphs and target users with profitable advertisements. Automated algorithms also flag Facebook posts that potentially violate the company’s terms of service.

China is already using these technologies to control its own people in ways that are largely hidden to outsiders.

According to a report by the University of Toronto’s Citizen Lab, the popular Chinese social network WeChat operates under a policy its authors call “One App, Two Systems.” Users with Chinese phone numbers are subjected to dynamic keyword censorship that changes depending on current events and whether a user is in a private chat or in a group. Depending on the political winds, users are blocked from accessing a range of websites that report critically on China through WeChat’s internal browser. Non-Chinese users, however, are not subject to any of these restrictions.

The censorship is also designed to be invisible. Messages are blocked without any user notification, and China has intermittently blocked WhatsApp and other foreign social networks. As a result, Chinese users are steered toward national social networks, which are more compliant with government pressure.

China’s policies play into a larger global trend: the nationalization of the internet. China, Russia, the European Union, and the United States have all adopted different approaches to censorship, user privacy, and surveillance. Although there are social networks such as WeChat or Russia’s VKontakte that are popular in primarily one country, nationalizing the internet challenges users of multinational services such as Facebook and YouTube. These different approaches, which impact everything from data safe harbor laws to legal consequences for posting inflammatory material, have implications for businesses working in multiple countries, as well.

For instance, Twitter is legally obligated to hide Nazi and neo-fascist imagery and some tweets in Germany and France—but not elsewhere. YouTube was officially banned in Turkey for two years because of videos a Turkish court deemed “insulting to the memory of Mustafa Kemal Atatürk,” father of modern Turkey. In Russia, Google must keep Russian users’ personal data on servers located inside Russia to comply with government policy.

While China is a pioneer in the field of instant censorship, tech companies in the United States are matching China’s progress, which could potentially have a chilling effect on democracy. In 2016, Apple applied for a patent on technology that censors audio streams in real time—automating the previously manual process of censoring curse words in streaming audio.

SAP Q417 DigitalDoubles Feature1 Image8 1024x572 AI Won’t Save Us From Pointless Jobs Unless We Let It

In March, after U.S. President Donald Trump told Fox News, “I think maybe I wouldn’t be [president] if it wasn’t for Twitter,” Twitter founder Evan “Ev” Williams did something highly unusual for the creator of a massive social network.

He apologized.

Speaking with David Streitfeld of The New York Times, Williams said, “It’s a very bad thing, Twitter’s role in that. If it’s true that he wouldn’t be president if it weren’t for Twitter, then yeah, I’m sorry.”

Entrepreneurs tend to be very proud of their innovations. Williams, however, offers a far more ambivalent response to his creation’s success. Much of the 2016 presidential election’s rancor was fueled by Twitter, and the instant gratification of Twitter attracts trolls, bullies, and bigots just as easily as it attracts politicians, celebrities, comedians, and sports fans.

Services such as Twitter, Facebook, YouTube, and Instagram are designed through a mix of look and feel, algorithmic wizardry, and psychological techniques to hang on to users for as long as possible—which helps the services sell more advertisements and make more money. Toxic political discourse and online harassment are unintended side effects of the economic-driven urge to keep users engaged no matter what.

Keeping users’ eyeballs on their screens requires endless hours of multivariate testing, user research, and algorithm refinement. For instance, Casey Newton of tech publication The Verge notes that Google Brain, Google’s AI division, plays a key part in generating YouTube’s video recommendations.

According to Jim McFadden, the technical lead for YouTube recommendations, “Before, if I watch this video from a comedian, our recommendations were pretty good at saying, here’s another one just like it,” he told Newton. “But the Google Brain model figures out other comedians who are similar but not exactly the same—even more adjacent relationships. It’s able to see patterns that are less obvious.”

SAP Q417 DigitalDoubles Feature1 Image9 AI Won’t Save Us From Pointless Jobs Unless We Let ItA never-ending flow of content that is interesting without being repetitive is harder to resist. With users glued to online services, addiction and other behavioral problems occur to an unhealthy degree. According to a 2016 poll by nonprofit research company Common Sense Media, 50% of American teenagers believe they are addicted to their smartphones.

This pattern is extending into the workplace. Seventy-five percent of companies told research company Harris Poll in 2016 that two or more hours a day are lost in productivity because employees are distracted. The number one reason? Cellphones and texting, according to 55% of those companies surveyed. Another 41% pointed to the internet.

Tristan Harris, a former design ethicist at Google, argues that many product designers for online services try to exploit psychological vulnerabilities in a bid to keep users engaged for longer periods. Harris refers to an iPhone as “a slot machine in my pocket” and argues that user interface (UI) and user experience (UX) designers need to adopt something akin to a Hippocratic Oath to stop exploiting users’ psychological vulnerabilities.

In fact, there is an entire school of study devoted to “dark UX”—small design tweaks to increase profits. These can be as innocuous as a “Buy Now” button in a visually pleasing color or as controversial as when Facebook tweaked its algorithm in 2012 to show a randomly selected group of almost 700,000 users (who had not given their permission) newsfeeds that skewed more positive to some users and more negative to others to gauge the impact on their respective emotional states, according to an article in Wired.

As computers, smartphones, and televisions come ever closer to convergence, these issues matter increasingly to businesses. Some of the universal side effects of addiction are lost productivity at work and poor health. Businesses should offer training and help for employees who can’t stop checking their smartphones.

Mindfulness-centered mobile apps such as Headspace, Calm, and Forest offer one way to break the habit. Users can also choose to break internet addiction by going for a walk, turning their computers off, or using tools like StayFocusd or Freedom to block addictive websites or apps.

Most importantly, companies in the business of creating tech products need to design software and hardware that discourages addictive behavior. This means avoiding bad designs that emphasize engagement metrics over human health. A world of advertising preroll showing up on smart refrigerator touchscreens at 2 a.m. benefits no one.

According to a 2014 study in Cyberpsychology, Behavior and Social Networking, approximately 6% of the world’s population suffers from internet addiction to one degree or another. As more users in emerging economies gain access to cheap data, smartphones, and laptops, that percentage will only increase. For businesses, getting a head start on stopping internet addiction will make employees happier and more productive. D!


About the Authors

Maurizio Cattaneo is Director, Delivery Execution, Energy, and Natural Resources, at SAP.

David Delaney is Global Vice President and Chief Medical Officer, SAP Health.

Volker Hildebrand is Global Vice President for SAP Hybris solutions.

Neal Ungerleider is a Los Angeles-based technology journalist and consultant.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Let’s block ads! (Why?)

Digitalist Magazine

Top Ten Digitalist Magazine Posts Of The Week [December 25, 2017]

Businesses share something important with lions. When a lion captures and consumes its prey, only about 10% to 20% of the prey’s energy is directly transferred into the lion’s metabolism. The rest evaporates away, mostly as heat loss, according to research done in the 1940s by ecologist Raymond Lindeman.

Today, businesses do only about as well as the big cats. When you consider the energy required to manage, power, and move products and services, less than 20% goes directly into the typical product or service—what economists call aggregate efficiency (the ratio of potential work to the actual useful work that gets embedded into a product or service at the expense of the energy lost in moving products and services through all of the steps of their value chains). Aggregate efficiency is a key factor in determining productivity.

SAP Q417 DigitalDoubles Feature2 Image2 Top Ten Digitalist Magazine Posts Of The Week [December 25, 2017]After making steady gains during much of the 20th century, businesses’ aggregate energy efficiency peaked in the 1980s and then stalled. Japan, home of the world’s most energy-efficient economy, has been skating along at or near 20% ever since. The U.S. economy, meanwhile, topped out at about 13% aggregate efficiency in the 1990s, according to research.

Why does this matter? Jeremy Rifkin says he knows why. Rifkin is an economic and social theorist, author, consultant, and lecturer at the Wharton School’s Executive Education program who believes that economies experience major increases in growth and productivity only when big shifts occur in three integrated infrastructure segments around the same time: communications, energy, and transportation.

But it’s only a matter of time before information technology blows all three wide open, says Rifkin. He envisions a new economic infrastructure based on digital integration of communications, energy, and transportation, riding atop an Internet of Things (IoT) platform that incorporates Big Data, analytics, and artificial intelligence. This platform will disrupt the world economy and bring dramatic levels of efficiency and productivity to businesses that take advantage of it,
he says.

Some economists consider Rifkin’s ideas controversial. And his vision of a new economic platform may be problematic—at least globally. It will require massive investments and unusually high levels of government, community, and private sector cooperation, all of which seem to be at depressingly low levels these days.

However, Rifkin has some influential adherents to his philosophy. He has advised three presidents of the European Commission—Romano Prodi, José Manuel Barroso, and the current president, Jean-Claude Juncker—as well as the European Parliament and numerous European Union (EU) heads of state, including Angela Merkel, on the ushering in of what he calls “a smart, green Third Industrial Revolution.” Rifkin is also advising the leadership of the People’s Republic of China on the build out and scale up of the “Internet Plus” Third Industrial Revolution infrastructure to usher in a sustainable low-carbon economy.

The internet has already shaken up one of the three major economic sectors: communications. Today it takes little more than a cell phone, an internet connection, and social media to publish a book or music video for free—what Rifkin calls zero marginal cost. The result has been a hollowing out of once-mighty media empires in just over 10 years. Much of what remains of their business models and revenues has been converted from physical (remember CDs and video stores?) to digital.

But we haven’t hit the trifecta yet. Transportation and energy have changed little since the middle of the last century, says Rifkin. That’s when superhighways reached their saturation point across the developed world and the internal-combustion engine came close to the limits of its potential on the roads, in the air, and at sea. “We have all these killer new technology products, but they’re being plugged into the same old infrastructure, and it’s not creating enough new business opportunities,” he says.

All that may be about to undergo a big shake-up, however. The digitalization of information on the IoT at near-zero marginal cost generates Big Data that can be mined with analytics to create algorithms and apps enabling ubiquitous networking. This digital transformation is beginning to have a big impact on the energy and transportation sectors. If that trend continues, we could see a metamorphosis in the economy and society not unlike previous industrial revolutions in history. And given the pace of technology change today, the shift could happen much faster than ever before.

SAP Q417 DigitalDoubles Feature2 Image3 1024x572 Top Ten Digitalist Magazine Posts Of The Week [December 25, 2017]The speed of change is dictated by the increase in digitalization of these three main sectors; expensive physical assets and processes are partially replaced by low-cost virtual ones. The cost efficiencies brought on by digitalization drive disruption in existing business models toward zero marginal cost, as we’ve already seen in entertainment and publishing. According to research company Gartner, when an industry gets to the point where digital drives at least 20% of revenues, you reach the tipping point.

“A clear pattern has emerged,” says Peter Sondergaard, executive vice president and head of research and advisory for Gartner. “Once digital revenues for a sector hit 20% of total revenue, the digital bloodbath begins,” he told the audience at Gartner’s annual 2017 IT Symposium/ITxpo, according to The Wall Street Journal. “No matter what industry you are in, 20% will be the point of no return.”

Communications is already there, and energy and transportation are heading down that path. If they hit the magic 20% mark, the impact will be felt not just within those industries but across all industries. After all, who doesn’t rely on energy and transportation to power their value chains?

That’s why businesses need to factor potentially massive business model disruptions into their plans for digital transformation today if they want to remain competitive with organizations in early adopter countries like China and Germany. China, for example, is already halfway through an US$ 88 billion upgrade to its state electricity grid that will enable renewable energy transmission around the country—all managed and moved digitally, according to an article in The Economist magazine. And it is competing with the United States for leadership in self-driving vehicles, which will shift the transportation process and revenue streams heavily to digital, according to an article in Wired magazine.

SAP Q417 DigitalDoubles Feature2 Image4 Top Ten Digitalist Magazine Posts Of The Week [December 25, 2017]Once China’s and Germany’s renewables and driverless infrastructures are in place, the only additional costs are management and maintenance. That could bring businesses in these countries dramatic cost savings over those that still rely on fossil fuels and nuclear energy to power their supply chains and logistics. “Once you pay the fixed costs of renewables, the marginal costs are near zero,” says Rifkin. “The sun and wind haven’t sent us invoices yet.”

In other words, zero marginal cost has become a zero-sum game.

To understand why that is, consider the major industrial revolutions in history, writes Rifkin in his books, The Zero Marginal Cost Society and The Third Industrial Revolution. The first major shift occurred in the 19th century when cheap, abundant coal provided an efficient new source of power (steam) for manufacturing and enabled the creation of a vast railway transportation network. Meanwhile, the telegraph gave the world near-instant communication over a globally connected network.

The second big change occurred at the beginning of the 20th century, when inexpensive oil began to displace coal and gave rise to a much more flexible new transportation network of cars and trucks. Telephones, radios, and televisions had a similar impact on communications.

Breaking Down the Walls Between Sectors

Now, according to Rifkin, we’re poised for the third big shift. The eye of the technology disruption hurricane has moved beyond communications and is heading toward—or as publishing and entertainment executives might warn, coming for—the rest of the economy. With its assemblage of global internet and cellular network connectivity and ever-smaller and more powerful sensors, the IoT, along with Big Data analytics and artificial intelligence, is breaking down the economic walls that have protected the energy and transportation sectors for the past 50 years.

Daimler is now among the first movers in transitioning into a digitalized mobility internet. The company has equipped nearly 400,000 of its trucks with external sensors, transforming the vehicles into mobile Big Data centers. The sensors are picking up real-time Big Data on weather conditions, traffic flows, and warehouse availability. Daimler plans to establish collaborations with thousands of companies, providing them with Big Data and analytics that can help dramatically increase their aggregate efficiency and productivity in shipping goods across their value chains. The Daimler trucks are autonomous and capable of establishing platoons of multiple trucks driving across highways.

It won’t be long before vehicles that navigate the more complex transportation infrastructures around the world begin to think for themselves. Autonomous vehicles will bring massive economic disruption to transportation and logistics thanks to new aggregate efficiencies. Without the cost of having a human at the wheel, autonomous cars could achieve a shared cost per mile below that of owned vehicles by as early as 2030, according to research from financial services company Morgan Stanley.

The transition is getting a push from governments pledging to give up their addiction to cars powered by combustion engines. Great Britain, France, India, and Norway are seeking to go all electric as early as 2025 and by 2040 at the latest.

The Final Piece of the Transition

Considering that automobiles account for 47% of petroleum consumption in the United States alone—more than twice the amount used for generators and heating for homes and businesses, according to the U.S. Energy Information Administration—Rifkin argues that the shift to autonomous electric vehicles could provide the momentum needed to upend the final pillar of the economic platform: energy. Though energy has gone through three major disruptions over the past 150 years, from coal to oil to natural gas—each causing massive teardowns and rebuilds of infrastructure—the underlying economic model has remained constant: highly concentrated and easily accessible fossil fuels and highly centralized, vertically integrated, and enormous (and enormously powerful) energy and utility companies.

Now, according to Rifkin, the “Third Industrial Revolution Internet of Things infrastructure” is on course to disrupt all of it. It’s neither centralized nor vertically integrated; instead, it’s distributed and networked. And that fits perfectly with the commercial evolution of two energy sources that, until the efficiencies of the IoT came along, made no sense for large-scale energy production: the sun and the wind.

But the IoT gives power utilities the means to harness these batches together and to account for variable energy flows. Sensors on solar panels and wind turbines, along with intelligent meters and a smart grid based on the internet, manage a new, two-way flow of energy to and from the grid.

SAP Q417 DigitalDoubles Feature2 Image5 Top Ten Digitalist Magazine Posts Of The Week [December 25, 2017]Today, fossil fuel–based power plants need to kick in extra energy if insufficient energy is collected from the sun and wind. But industrial-strength batteries and hydrogen fuel cells are beginning to take their place by storing large reservoirs of reserve power for rainy or windless days. In addition, electric vehicles will be able to send some of their stored energy to the digitalized energy internet during peak use. Demand for ever-more efficient cell phone and vehicle batteries is helping push the evolution of batteries along, but batteries will need to get a lot better if renewables are to completely replace fossil fuel energy generation.

Meanwhile, silicon-based solar cells have not yet approached their limits of efficiency. They have their own version of computing’s Moore’s Law called Swanson’s Law. According to data from research company Bloomberg New Energy Finance (BNEF), Swanson’s Law means that for each doubling of global solar panel manufacturing capacity, the price falls by 28%, from $ 76 per watt in 1977 to $ 0.41 in 2016. (Wind power is on a similar plunging exponential cost curve, according to data from the U.S. Department of Energy.)

Thanks to the plummeting solar price, by 2028, the cost of building and operating new sun-based generation capacity will drop below the cost of running existing fossil power plants, according to BNEF. “One of the surprising things in this year’s forecast,” says Seb Henbest, lead author of BNEF’s annual long-term forecast, the New Energy Outlook, “is that the crossover points in the economics of new and old technologies are happening much sooner than we thought last year … and those were all happening a bit sooner than we thought the year before. There’s this sense that it’s not some distant risk or distant opportunity. A lot of these realities are rushing toward us.”

The conclusion, he says, is irrefutable. “We can see the data and when we map that forward with conservative assumptions, these technologies just get cheaper than everything else.”

The smart money, then—72% of total new power generation capacity investment worldwide by 2040—will go to renewable energy, according to BNEF. The firm’s research also suggests that there’s more room in Swanson’s Law along the way, with solar prices expected to drop another 66% by 2040.

Another factor could push the economic shift to renewables even faster. Just as computers transitioned from being strictly corporate infrastructure to becoming consumer products with the invention of the PC in the 1980s, ultimately causing a dramatic increase in corporate IT investments, energy generation has also made the transition to the consumer side.

Thanks to future tech media star Elon Musk, consumers can go to his Tesla Energy company website and order tempered glass solar panels that look like chic, designer versions of old-fashioned roof shingles. Models that look like slate or a curved, terracotta-colored, ceramic-style glass that will make roofs look like those of Tuscan country villas, are promised soon. Consumers can also buy a sleek-looking battery called a Powerwall to store energy from the roof.

SAP Q417 DigitalDoubles Feature2 Image6 Top Ten Digitalist Magazine Posts Of The Week [December 25, 2017]The combination of solar panels, batteries, and smart meters transforms homeowners from passive consumers of energy into active producers and traders who can choose to take energy from the grid during off-peak hours, when some utilities offer discounts, and sell energy back to the grid during periods when prices are higher. And new blockchain applications promise to accelerate the shift to an energy market that is laterally integrated rather than vertically integrated as it is now. Consumers like their newfound sense of control, according to Henbest. “Energy’s never been an interesting consumer decision before and suddenly it is,” he says.

As the price of solar equipment continues to drop, homes, offices, and factories will become like nodes on a computer network. And if promising new solar cell technologies, such as organic polymers, small molecules, and inorganic compounds, supplant silicon, which is not nearly as efficient with sunlight as it is with ones and zeroes, solar receivers could become embedded into windows and building compounds. Solar production could move off the roof and become integrated into the external facades of homes and office buildings, making nearly every edifice in town a node.

The big question, of course, is how quickly those nodes will become linked together—if, say doubters, they become linked at all. As we learned from Metcalfe’s Law, the value of a network is proportional to its number of connected users.

The Will Determines the Way

Right now, the network is limited. Wind and solar account for just 5% of global energy production today, according to Bloomberg.

But, says Rifkin, technology exists that could enable the network to grow exponentially. We are seeing the beginnings of a digital energy network, which uses a combination of the IoT, Big Data, analytics, and artificial intelligence to manage distributed energy sources, such as solar and wind power from homes and businesses.

As nodes on this network, consumers and businesses could take a more active role in energy production, management, and efficiency, according to Rifkin. Utilities, in turn, could transition from simply transmitting power and maintaining power plants and lines to managing the flow to and from many different energy nodes; selling and maintaining smart home energy management products; and monitoring and maintaining solar panels and wind turbines. By analyzing energy use in the network, utilities could create algorithms that automatically smooth the flow of renewables. Consumers and businesses, meanwhile, would not have to worry about connecting their wind and solar assets to the grid and keeping them up and running; utilities could take on those tasks more efficiently.

Already in Germany, two utility companies, E.ON and RWE, have each split their businesses into legacy fossil and nuclear fuel companies and new services companies based on distributed generation from renewables, new technologies, and digitalization.

The reason is simple: it’s about survival. As fossil fuel generation winds down, the utilities need a new business model to make up for lost revenue. Due to Germany’s population density, “the utilities realize that they won’t ever have access to enough land to scale renewables themselves,” says Rifkin. “So they are starting service companies to link together all the different communities that are building solar and wind and are managing energy flows for them and for their customers, doing their analytics, and managing their Big Data. That’s how they will make more money while selling less energy in the future.”

SAP Q417 DigitalDoubles Feature2 Image7 1024x572 Top Ten Digitalist Magazine Posts Of The Week [December 25, 2017]

The digital energy internet is already starting out in pockets and at different levels of intensity around the world, depending on a combination of citizen support, utility company investments, governmental power, and economic incentives.

China and some countries within the EU, such as Germany and France, are the most likely leaders in the transition toward a renewable, energy-based infrastructure because they have been able to align the government and private sectors in long-term energy planning. In the EU for example, wind has already overtaken coal as the second largest form of power capacity behind natural gas, according to an article in TheGuardian newspaper. Indeed, Rifkin has been working with China, the EU, and governments, communities, and utilities in Northern France, the Netherlands, and Luxembourg to begin building these new internets.

Hauts-de-France, a region that borders the English Channel and Belgium and has one of the highest poverty rates in France, enlisted Rifkin to develop a plan to lift it out of its downward spiral of shuttered factories and abandoned coal mines. In collaboration with a diverse group of CEOs, politicians, teachers, scientists, and others, it developed Rev3, a plan to put people to work building a renewable energy network, according to an article in Vice.

Today, more than 1,000 Rev3 projects are underway, encompassing everything from residential windmills made from local linen to a fully electric car–sharing system. Rev3 has received financial support from the European Investment Bank and a handful of private investment funds, and startups have benefited from crowdfunding mechanisms sponsored by Rev3. Today, 90% of new energy in the region is renewable and 1,500 new jobs have been created in the wind energy sector alone.

Meanwhile, thanks in part to generous government financial support, Germany is already producing 35% of its energy from renewables, according to an article in TheIndependent, and there is near unanimous citizen support (95%, according to a recent government poll) for its expansion.

If renewable energy is to move forward in other areas of the world that don’t enjoy such strong economic and political support, however, it must come from the ability to make green, not act green.

Not everyone agrees that renewables will produce cost savings sufficient to cause widespread cost disruption anytime soon. A recent forecast by the U.S. Energy Information Administration predicts that in 2040, oil, natural gas, and coal will still be the planet’s major electricity producers, powering 77% of worldwide production, while renewables such as wind, solar, and biofuels will account for just 15%.

Skeptics also say that renewables’ complex management needs, combined with the need to store reserve power, will make them less economical than fossil fuels through at least 2035. “All advanced economies demand full-time electricity,” Benjamin Sporton, chief executive officer of the World Coal Association told Bloomberg. “Wind and solar can only generate part-time, intermittent electricity. While some renewable technologies have achieved significant cost reductions in recent years, it’s important to look at total system costs.”

On the other hand, there are many areas of the world where distributed, decentralized, renewable power generation already makes more sense than a centralized fossil fuel–powered grid. More than 20% of Indians in far flung areas of the country have no access to power today, according to an article in TheGuardian. Locally owned and managed solar and wind farms are the most economical way forward. The same is true in other developing countries, such as Afghanistan, where rugged terrain, war, and tribal territorialism make a centralized grid an easy target, and mountainous Costa Rica, where strong winds and rivers have pushed the country to near 100% renewable energy, according to TheGuardian.

The Light and the Darknet

Even if all the different IoT-enabled economic platforms become financially advantageous, there is another concern that could disrupt progress and potentially cause widespread disaster once the new platforms are up and running: hacking. Poorly secured IoT sensors have allowed hackers to take over everything from Wi-Fi enabled Barbie dolls to Jeep Cherokees, according to an article in Wired magazine.

Humans may be lousy drivers, but at least we can’t be hacked (yet). And while the grid may be prone to outages, it is tightly controlled, has few access points for hackers, and is physically separated from the Wild West of the internet.

If our transportation and energy networks join the fray, however, every sensor, from those in the steering system on vehicles to grid-connected toasters, becomes as vulnerable as a credit card number. Fake news and election hacking are bad enough, but what about fake drivers or fake energy? Now we’re talking dangerous disruptions and putting millions of people in harm’s way.

SAP Q417 DigitalDoubles Feature2 Image8 Top Ten Digitalist Magazine Posts Of The Week [December 25, 2017]The only answer, according to Rifkin, is for businesses and governments to start taking the hacking threat much more seriously than they do today and to begin pouring money into research and technologies for making the internet less vulnerable. That means establishing “a fully distributed, redundant, and resilient digital infrastructure less vulnerable to the kind of disruptions experienced by Second Industrial Revolution–centralized communication systems and power grids that are increasingly subject to climate change, disasters, cybercrime, and cyberterrorism,” he says. “The ability of neighborhoods and communities to go off centralized grids during crises and re-aggregate in locally decentralized networks is the key to advancing societal security in the digital era,” he adds.

Start Looking Ahead

Until today, digital transformation has come mainly through the networking and communications efficiencies made possible by the internet. Airbnb thrives because web communications make it possible to create virtual trust markets that allow people to feel safe about swapping their most private spaces with one another.

But now these same efficiencies are coming to two other areas that have never been considered core to business strategy. That’s why businesses need to begin managing energy and transportation as key elements of their digital transformation portfolios.

Microsoft, for example, formed a senior energy team to develop an energy strategy to mitigate risk from fluctuating energy prices and increasing demands from customers to reduce carbon emissions, according to an article in Harvard Business Review. “Energy has become a C-suite issue,” Rob Bernard, Microsoft’s top environmental and sustainability executive told the magazine. “The CFO and president are now actively involved in our energy road map.”

As Daimler’s experience shows, driverless vehicles will push autonomous transportation and automated logistics up the strategic agenda within the next few years. Boston Consulting Group predicts that the driverless vehicle market will hit $ 42 billion by 2025. If that happens, it could have a lateral impact across many industries, from insurance to healthcare to the military.

Businesses must start planning now. “There’s always a period when businesses have to live in the new and the old worlds at the same time,” says Rifkin. “So businesses need to be considering new business models and structures now while continuing to operate their existing models.”

He worries that many businesses will be left behind if their communications, energy, and transportation infrastructures don’t evolve. Companies that still rely on fossil fuels for powering traditional transportation and logistics could be at a major competitive disadvantage to those that have moved to the new, IoT-based energy and transportation infrastructures.

Germany, for example, has set a target of 80% renewables for gross power consumption by 2050, according to TheIndependent. If the cost advantages of renewables bear out, German businesses, which are already the world’s third-largest exporters behind China and the United States, could have a major competitive advantage.

“How would a second industrial revolution society or country compete with one that has energy at zero marginal cost and driverless vehicles?” asks Rifkin. “It can’t be done.” D!


About the Authors

Maurizio Cattaneo is Director, Delivery Execution, Energy and Natural Resources, at SAP.

Joerg Ferchow is Senior Utilities Expert and Design Thinking Coach, Digital Transformation, at SAP.

Daniel Wellers is Digital Futures Lead, Global Marketing, at SAP.

Christopher Koch is Editorial Director, SAP Center for Business Insight, at SAP.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Let’s block ads! (Why?)

Digitalist Magazine

Six New Tech Trends To Start Pursuing Today

Businesses share something important with lions. When a lion captures and consumes its prey, only about 10% to 20% of the prey’s energy is directly transferred into the lion’s metabolism. The rest evaporates away, mostly as heat loss, according to research done in the 1940s by ecologist Raymond Lindeman.

Today, businesses do only about as well as the big cats. When you consider the energy required to manage, power, and move products and services, less than 20% goes directly into the typical product or service—what economists call aggregate efficiency (the ratio of potential work to the actual useful work that gets embedded into a product or service at the expense of the energy lost in moving products and services through all of the steps of their value chains). Aggregate efficiency is a key factor in determining productivity.

SAP Q417 DigitalDoubles Feature2 Image2 Six New Tech Trends To Start Pursuing TodayAfter making steady gains during much of the 20th century, businesses’ aggregate energy efficiency peaked in the 1980s and then stalled. Japan, home of the world’s most energy-efficient economy, has been skating along at or near 20% ever since. The U.S. economy, meanwhile, topped out at about 13% aggregate efficiency in the 1990s, according to research.

Why does this matter? Jeremy Rifkin says he knows why. Rifkin is an economic and social theorist, author, consultant, and lecturer at the Wharton School’s Executive Education program who believes that economies experience major increases in growth and productivity only when big shifts occur in three integrated infrastructure segments around the same time: communications, energy, and transportation.

But it’s only a matter of time before information technology blows all three wide open, says Rifkin. He envisions a new economic infrastructure based on digital integration of communications, energy, and transportation, riding atop an Internet of Things (IoT) platform that incorporates Big Data, analytics, and artificial intelligence. This platform will disrupt the world economy and bring dramatic levels of efficiency and productivity to businesses that take advantage of it,
he says.

Some economists consider Rifkin’s ideas controversial. And his vision of a new economic platform may be problematic—at least globally. It will require massive investments and unusually high levels of government, community, and private sector cooperation, all of which seem to be at depressingly low levels these days.

However, Rifkin has some influential adherents to his philosophy. He has advised three presidents of the European Commission—Romano Prodi, José Manuel Barroso, and the current president, Jean-Claude Juncker—as well as the European Parliament and numerous European Union (EU) heads of state, including Angela Merkel, on the ushering in of what he calls “a smart, green Third Industrial Revolution.” Rifkin is also advising the leadership of the People’s Republic of China on the build out and scale up of the “Internet Plus” Third Industrial Revolution infrastructure to usher in a sustainable low-carbon economy.

The internet has already shaken up one of the three major economic sectors: communications. Today it takes little more than a cell phone, an internet connection, and social media to publish a book or music video for free—what Rifkin calls zero marginal cost. The result has been a hollowing out of once-mighty media empires in just over 10 years. Much of what remains of their business models and revenues has been converted from physical (remember CDs and video stores?) to digital.

But we haven’t hit the trifecta yet. Transportation and energy have changed little since the middle of the last century, says Rifkin. That’s when superhighways reached their saturation point across the developed world and the internal-combustion engine came close to the limits of its potential on the roads, in the air, and at sea. “We have all these killer new technology products, but they’re being plugged into the same old infrastructure, and it’s not creating enough new business opportunities,” he says.

All that may be about to undergo a big shake-up, however. The digitalization of information on the IoT at near-zero marginal cost generates Big Data that can be mined with analytics to create algorithms and apps enabling ubiquitous networking. This digital transformation is beginning to have a big impact on the energy and transportation sectors. If that trend continues, we could see a metamorphosis in the economy and society not unlike previous industrial revolutions in history. And given the pace of technology change today, the shift could happen much faster than ever before.

SAP Q417 DigitalDoubles Feature2 Image3 1024x572 Six New Tech Trends To Start Pursuing TodayThe speed of change is dictated by the increase in digitalization of these three main sectors; expensive physical assets and processes are partially replaced by low-cost virtual ones. The cost efficiencies brought on by digitalization drive disruption in existing business models toward zero marginal cost, as we’ve already seen in entertainment and publishing. According to research company Gartner, when an industry gets to the point where digital drives at least 20% of revenues, you reach the tipping point.

“A clear pattern has emerged,” says Peter Sondergaard, executive vice president and head of research and advisory for Gartner. “Once digital revenues for a sector hit 20% of total revenue, the digital bloodbath begins,” he told the audience at Gartner’s annual 2017 IT Symposium/ITxpo, according to The Wall Street Journal. “No matter what industry you are in, 20% will be the point of no return.”

Communications is already there, and energy and transportation are heading down that path. If they hit the magic 20% mark, the impact will be felt not just within those industries but across all industries. After all, who doesn’t rely on energy and transportation to power their value chains?

That’s why businesses need to factor potentially massive business model disruptions into their plans for digital transformation today if they want to remain competitive with organizations in early adopter countries like China and Germany. China, for example, is already halfway through an US$ 88 billion upgrade to its state electricity grid that will enable renewable energy transmission around the country—all managed and moved digitally, according to an article in The Economist magazine. And it is competing with the United States for leadership in self-driving vehicles, which will shift the transportation process and revenue streams heavily to digital, according to an article in Wired magazine.

SAP Q417 DigitalDoubles Feature2 Image4 Six New Tech Trends To Start Pursuing TodayOnce China’s and Germany’s renewables and driverless infrastructures are in place, the only additional costs are management and maintenance. That could bring businesses in these countries dramatic cost savings over those that still rely on fossil fuels and nuclear energy to power their supply chains and logistics. “Once you pay the fixed costs of renewables, the marginal costs are near zero,” says Rifkin. “The sun and wind haven’t sent us invoices yet.”

In other words, zero marginal cost has become a zero-sum game.

To understand why that is, consider the major industrial revolutions in history, writes Rifkin in his books, The Zero Marginal Cost Society and The Third Industrial Revolution. The first major shift occurred in the 19th century when cheap, abundant coal provided an efficient new source of power (steam) for manufacturing and enabled the creation of a vast railway transportation network. Meanwhile, the telegraph gave the world near-instant communication over a globally connected network.

The second big change occurred at the beginning of the 20th century, when inexpensive oil began to displace coal and gave rise to a much more flexible new transportation network of cars and trucks. Telephones, radios, and televisions had a similar impact on communications.

Breaking Down the Walls Between Sectors

Now, according to Rifkin, we’re poised for the third big shift. The eye of the technology disruption hurricane has moved beyond communications and is heading toward—or as publishing and entertainment executives might warn, coming for—the rest of the economy. With its assemblage of global internet and cellular network connectivity and ever-smaller and more powerful sensors, the IoT, along with Big Data analytics and artificial intelligence, is breaking down the economic walls that have protected the energy and transportation sectors for the past 50 years.

Daimler is now among the first movers in transitioning into a digitalized mobility internet. The company has equipped nearly 400,000 of its trucks with external sensors, transforming the vehicles into mobile Big Data centers. The sensors are picking up real-time Big Data on weather conditions, traffic flows, and warehouse availability. Daimler plans to establish collaborations with thousands of companies, providing them with Big Data and analytics that can help dramatically increase their aggregate efficiency and productivity in shipping goods across their value chains. The Daimler trucks are autonomous and capable of establishing platoons of multiple trucks driving across highways.

It won’t be long before vehicles that navigate the more complex transportation infrastructures around the world begin to think for themselves. Autonomous vehicles will bring massive economic disruption to transportation and logistics thanks to new aggregate efficiencies. Without the cost of having a human at the wheel, autonomous cars could achieve a shared cost per mile below that of owned vehicles by as early as 2030, according to research from financial services company Morgan Stanley.

The transition is getting a push from governments pledging to give up their addiction to cars powered by combustion engines. Great Britain, France, India, and Norway are seeking to go all electric as early as 2025 and by 2040 at the latest.

The Final Piece of the Transition

Considering that automobiles account for 47% of petroleum consumption in the United States alone—more than twice the amount used for generators and heating for homes and businesses, according to the U.S. Energy Information Administration—Rifkin argues that the shift to autonomous electric vehicles could provide the momentum needed to upend the final pillar of the economic platform: energy. Though energy has gone through three major disruptions over the past 150 years, from coal to oil to natural gas—each causing massive teardowns and rebuilds of infrastructure—the underlying economic model has remained constant: highly concentrated and easily accessible fossil fuels and highly centralized, vertically integrated, and enormous (and enormously powerful) energy and utility companies.

Now, according to Rifkin, the “Third Industrial Revolution Internet of Things infrastructure” is on course to disrupt all of it. It’s neither centralized nor vertically integrated; instead, it’s distributed and networked. And that fits perfectly with the commercial evolution of two energy sources that, until the efficiencies of the IoT came along, made no sense for large-scale energy production: the sun and the wind.

But the IoT gives power utilities the means to harness these batches together and to account for variable energy flows. Sensors on solar panels and wind turbines, along with intelligent meters and a smart grid based on the internet, manage a new, two-way flow of energy to and from the grid.

SAP Q417 DigitalDoubles Feature2 Image5 Six New Tech Trends To Start Pursuing TodayToday, fossil fuel–based power plants need to kick in extra energy if insufficient energy is collected from the sun and wind. But industrial-strength batteries and hydrogen fuel cells are beginning to take their place by storing large reservoirs of reserve power for rainy or windless days. In addition, electric vehicles will be able to send some of their stored energy to the digitalized energy internet during peak use. Demand for ever-more efficient cell phone and vehicle batteries is helping push the evolution of batteries along, but batteries will need to get a lot better if renewables are to completely replace fossil fuel energy generation.

Meanwhile, silicon-based solar cells have not yet approached their limits of efficiency. They have their own version of computing’s Moore’s Law called Swanson’s Law. According to data from research company Bloomberg New Energy Finance (BNEF), Swanson’s Law means that for each doubling of global solar panel manufacturing capacity, the price falls by 28%, from $ 76 per watt in 1977 to $ 0.41 in 2016. (Wind power is on a similar plunging exponential cost curve, according to data from the U.S. Department of Energy.)

Thanks to the plummeting solar price, by 2028, the cost of building and operating new sun-based generation capacity will drop below the cost of running existing fossil power plants, according to BNEF. “One of the surprising things in this year’s forecast,” says Seb Henbest, lead author of BNEF’s annual long-term forecast, the New Energy Outlook, “is that the crossover points in the economics of new and old technologies are happening much sooner than we thought last year … and those were all happening a bit sooner than we thought the year before. There’s this sense that it’s not some distant risk or distant opportunity. A lot of these realities are rushing toward us.”

The conclusion, he says, is irrefutable. “We can see the data and when we map that forward with conservative assumptions, these technologies just get cheaper than everything else.”

The smart money, then—72% of total new power generation capacity investment worldwide by 2040—will go to renewable energy, according to BNEF. The firm’s research also suggests that there’s more room in Swanson’s Law along the way, with solar prices expected to drop another 66% by 2040.

Another factor could push the economic shift to renewables even faster. Just as computers transitioned from being strictly corporate infrastructure to becoming consumer products with the invention of the PC in the 1980s, ultimately causing a dramatic increase in corporate IT investments, energy generation has also made the transition to the consumer side.

Thanks to future tech media star Elon Musk, consumers can go to his Tesla Energy company website and order tempered glass solar panels that look like chic, designer versions of old-fashioned roof shingles. Models that look like slate or a curved, terracotta-colored, ceramic-style glass that will make roofs look like those of Tuscan country villas, are promised soon. Consumers can also buy a sleek-looking battery called a Powerwall to store energy from the roof.

SAP Q417 DigitalDoubles Feature2 Image6 Six New Tech Trends To Start Pursuing TodayThe combination of solar panels, batteries, and smart meters transforms homeowners from passive consumers of energy into active producers and traders who can choose to take energy from the grid during off-peak hours, when some utilities offer discounts, and sell energy back to the grid during periods when prices are higher. And new blockchain applications promise to accelerate the shift to an energy market that is laterally integrated rather than vertically integrated as it is now. Consumers like their newfound sense of control, according to Henbest. “Energy’s never been an interesting consumer decision before and suddenly it is,” he says.

As the price of solar equipment continues to drop, homes, offices, and factories will become like nodes on a computer network. And if promising new solar cell technologies, such as organic polymers, small molecules, and inorganic compounds, supplant silicon, which is not nearly as efficient with sunlight as it is with ones and zeroes, solar receivers could become embedded into windows and building compounds. Solar production could move off the roof and become integrated into the external facades of homes and office buildings, making nearly every edifice in town a node.

The big question, of course, is how quickly those nodes will become linked together—if, say doubters, they become linked at all. As we learned from Metcalfe’s Law, the value of a network is proportional to its number of connected users.

The Will Determines the Way

Right now, the network is limited. Wind and solar account for just 5% of global energy production today, according to Bloomberg.

But, says Rifkin, technology exists that could enable the network to grow exponentially. We are seeing the beginnings of a digital energy network, which uses a combination of the IoT, Big Data, analytics, and artificial intelligence to manage distributed energy sources, such as solar and wind power from homes and businesses.

As nodes on this network, consumers and businesses could take a more active role in energy production, management, and efficiency, according to Rifkin. Utilities, in turn, could transition from simply transmitting power and maintaining power plants and lines to managing the flow to and from many different energy nodes; selling and maintaining smart home energy management products; and monitoring and maintaining solar panels and wind turbines. By analyzing energy use in the network, utilities could create algorithms that automatically smooth the flow of renewables. Consumers and businesses, meanwhile, would not have to worry about connecting their wind and solar assets to the grid and keeping them up and running; utilities could take on those tasks more efficiently.

Already in Germany, two utility companies, E.ON and RWE, have each split their businesses into legacy fossil and nuclear fuel companies and new services companies based on distributed generation from renewables, new technologies, and digitalization.

The reason is simple: it’s about survival. As fossil fuel generation winds down, the utilities need a new business model to make up for lost revenue. Due to Germany’s population density, “the utilities realize that they won’t ever have access to enough land to scale renewables themselves,” says Rifkin. “So they are starting service companies to link together all the different communities that are building solar and wind and are managing energy flows for them and for their customers, doing their analytics, and managing their Big Data. That’s how they will make more money while selling less energy in the future.”

SAP Q417 DigitalDoubles Feature2 Image7 1024x572 Six New Tech Trends To Start Pursuing Today

The digital energy internet is already starting out in pockets and at different levels of intensity around the world, depending on a combination of citizen support, utility company investments, governmental power, and economic incentives.

China and some countries within the EU, such as Germany and France, are the most likely leaders in the transition toward a renewable, energy-based infrastructure because they have been able to align the government and private sectors in long-term energy planning. In the EU for example, wind has already overtaken coal as the second largest form of power capacity behind natural gas, according to an article in TheGuardian newspaper. Indeed, Rifkin has been working with China, the EU, and governments, communities, and utilities in Northern France, the Netherlands, and Luxembourg to begin building these new internets.

Hauts-de-France, a region that borders the English Channel and Belgium and has one of the highest poverty rates in France, enlisted Rifkin to develop a plan to lift it out of its downward spiral of shuttered factories and abandoned coal mines. In collaboration with a diverse group of CEOs, politicians, teachers, scientists, and others, it developed Rev3, a plan to put people to work building a renewable energy network, according to an article in Vice.

Today, more than 1,000 Rev3 projects are underway, encompassing everything from residential windmills made from local linen to a fully electric car–sharing system. Rev3 has received financial support from the European Investment Bank and a handful of private investment funds, and startups have benefited from crowdfunding mechanisms sponsored by Rev3. Today, 90% of new energy in the region is renewable and 1,500 new jobs have been created in the wind energy sector alone.

Meanwhile, thanks in part to generous government financial support, Germany is already producing 35% of its energy from renewables, according to an article in TheIndependent, and there is near unanimous citizen support (95%, according to a recent government poll) for its expansion.

If renewable energy is to move forward in other areas of the world that don’t enjoy such strong economic and political support, however, it must come from the ability to make green, not act green.

Not everyone agrees that renewables will produce cost savings sufficient to cause widespread cost disruption anytime soon. A recent forecast by the U.S. Energy Information Administration predicts that in 2040, oil, natural gas, and coal will still be the planet’s major electricity producers, powering 77% of worldwide production, while renewables such as wind, solar, and biofuels will account for just 15%.

Skeptics also say that renewables’ complex management needs, combined with the need to store reserve power, will make them less economical than fossil fuels through at least 2035. “All advanced economies demand full-time electricity,” Benjamin Sporton, chief executive officer of the World Coal Association told Bloomberg. “Wind and solar can only generate part-time, intermittent electricity. While some renewable technologies have achieved significant cost reductions in recent years, it’s important to look at total system costs.”

On the other hand, there are many areas of the world where distributed, decentralized, renewable power generation already makes more sense than a centralized fossil fuel–powered grid. More than 20% of Indians in far flung areas of the country have no access to power today, according to an article in TheGuardian. Locally owned and managed solar and wind farms are the most economical way forward. The same is true in other developing countries, such as Afghanistan, where rugged terrain, war, and tribal territorialism make a centralized grid an easy target, and mountainous Costa Rica, where strong winds and rivers have pushed the country to near 100% renewable energy, according to TheGuardian.

The Light and the Darknet

Even if all the different IoT-enabled economic platforms become financially advantageous, there is another concern that could disrupt progress and potentially cause widespread disaster once the new platforms are up and running: hacking. Poorly secured IoT sensors have allowed hackers to take over everything from Wi-Fi enabled Barbie dolls to Jeep Cherokees, according to an article in Wired magazine.

Humans may be lousy drivers, but at least we can’t be hacked (yet). And while the grid may be prone to outages, it is tightly controlled, has few access points for hackers, and is physically separated from the Wild West of the internet.

If our transportation and energy networks join the fray, however, every sensor, from those in the steering system on vehicles to grid-connected toasters, becomes as vulnerable as a credit card number. Fake news and election hacking are bad enough, but what about fake drivers or fake energy? Now we’re talking dangerous disruptions and putting millions of people in harm’s way.

SAP Q417 DigitalDoubles Feature2 Image8 Six New Tech Trends To Start Pursuing TodayThe only answer, according to Rifkin, is for businesses and governments to start taking the hacking threat much more seriously than they do today and to begin pouring money into research and technologies for making the internet less vulnerable. That means establishing “a fully distributed, redundant, and resilient digital infrastructure less vulnerable to the kind of disruptions experienced by Second Industrial Revolution–centralized communication systems and power grids that are increasingly subject to climate change, disasters, cybercrime, and cyberterrorism,” he says. “The ability of neighborhoods and communities to go off centralized grids during crises and re-aggregate in locally decentralized networks is the key to advancing societal security in the digital era,” he adds.

Start Looking Ahead

Until today, digital transformation has come mainly through the networking and communications efficiencies made possible by the internet. Airbnb thrives because web communications make it possible to create virtual trust markets that allow people to feel safe about swapping their most private spaces with one another.

But now these same efficiencies are coming to two other areas that have never been considered core to business strategy. That’s why businesses need to begin managing energy and transportation as key elements of their digital transformation portfolios.

Microsoft, for example, formed a senior energy team to develop an energy strategy to mitigate risk from fluctuating energy prices and increasing demands from customers to reduce carbon emissions, according to an article in Harvard Business Review. “Energy has become a C-suite issue,” Rob Bernard, Microsoft’s top environmental and sustainability executive told the magazine. “The CFO and president are now actively involved in our energy road map.”

As Daimler’s experience shows, driverless vehicles will push autonomous transportation and automated logistics up the strategic agenda within the next few years. Boston Consulting Group predicts that the driverless vehicle market will hit $ 42 billion by 2025. If that happens, it could have a lateral impact across many industries, from insurance to healthcare to the military.

Businesses must start planning now. “There’s always a period when businesses have to live in the new and the old worlds at the same time,” says Rifkin. “So businesses need to be considering new business models and structures now while continuing to operate their existing models.”

He worries that many businesses will be left behind if their communications, energy, and transportation infrastructures don’t evolve. Companies that still rely on fossil fuels for powering traditional transportation and logistics could be at a major competitive disadvantage to those that have moved to the new, IoT-based energy and transportation infrastructures.

Germany, for example, has set a target of 80% renewables for gross power consumption by 2050, according to TheIndependent. If the cost advantages of renewables bear out, German businesses, which are already the world’s third-largest exporters behind China and the United States, could have a major competitive advantage.

“How would a second industrial revolution society or country compete with one that has energy at zero marginal cost and driverless vehicles?” asks Rifkin. “It can’t be done.” D!


About the Authors

Maurizio Cattaneo is Director, Delivery Execution, Energy and Natural Resources, at SAP.

Joerg Ferchow is Senior Utilities Expert and Design Thinking Coach, Digital Transformation, at SAP.

Daniel Wellers is Digital Futures Lead, Global Marketing, at SAP.

Christopher Koch is Editorial Director, SAP Center for Business Insight, at SAP.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Let’s block ads! (Why?)

Digitalist Magazine

Three Tips To Help Managers Understand Their Employees

Businesses share something important with lions. When a lion captures and consumes its prey, only about 10% to 20% of the prey’s energy is directly transferred into the lion’s metabolism. The rest evaporates away, mostly as heat loss, according to research done in the 1940s by ecologist Raymond Lindeman.

Today, businesses do only about as well as the big cats. When you consider the energy required to manage, power, and move products and services, less than 20% goes directly into the typical product or service—what economists call aggregate efficiency (the ratio of potential work to the actual useful work that gets embedded into a product or service at the expense of the energy lost in moving products and services through all of the steps of their value chains). Aggregate efficiency is a key factor in determining productivity.

SAP Q417 DigitalDoubles Feature2 Image2 Three Tips To Help Managers Understand Their EmployeesAfter making steady gains during much of the 20th century, businesses’ aggregate energy efficiency peaked in the 1980s and then stalled. Japan, home of the world’s most energy-efficient economy, has been skating along at or near 20% ever since. The U.S. economy, meanwhile, topped out at about 13% aggregate efficiency in the 1990s, according to research.

Why does this matter? Jeremy Rifkin says he knows why. Rifkin is an economic and social theorist, author, consultant, and lecturer at the Wharton School’s Executive Education program who believes that economies experience major increases in growth and productivity only when big shifts occur in three integrated infrastructure segments around the same time: communications, energy, and transportation.

But it’s only a matter of time before information technology blows all three wide open, says Rifkin. He envisions a new economic infrastructure based on digital integration of communications, energy, and transportation, riding atop an Internet of Things (IoT) platform that incorporates Big Data, analytics, and artificial intelligence. This platform will disrupt the world economy and bring dramatic levels of efficiency and productivity to businesses that take advantage of it,
he says.

Some economists consider Rifkin’s ideas controversial. And his vision of a new economic platform may be problematic—at least globally. It will require massive investments and unusually high levels of government, community, and private sector cooperation, all of which seem to be at depressingly low levels these days.

However, Rifkin has some influential adherents to his philosophy. He has advised three presidents of the European Commission—Romano Prodi, José Manuel Barroso, and the current president, Jean-Claude Juncker—as well as the European Parliament and numerous European Union (EU) heads of state, including Angela Merkel, on the ushering in of what he calls “a smart, green Third Industrial Revolution.” Rifkin is also advising the leadership of the People’s Republic of China on the build out and scale up of the “Internet Plus” Third Industrial Revolution infrastructure to usher in a sustainable low-carbon economy.

The internet has already shaken up one of the three major economic sectors: communications. Today it takes little more than a cell phone, an internet connection, and social media to publish a book or music video for free—what Rifkin calls zero marginal cost. The result has been a hollowing out of once-mighty media empires in just over 10 years. Much of what remains of their business models and revenues has been converted from physical (remember CDs and video stores?) to digital.

But we haven’t hit the trifecta yet. Transportation and energy have changed little since the middle of the last century, says Rifkin. That’s when superhighways reached their saturation point across the developed world and the internal-combustion engine came close to the limits of its potential on the roads, in the air, and at sea. “We have all these killer new technology products, but they’re being plugged into the same old infrastructure, and it’s not creating enough new business opportunities,” he says.

All that may be about to undergo a big shake-up, however. The digitalization of information on the IoT at near-zero marginal cost generates Big Data that can be mined with analytics to create algorithms and apps enabling ubiquitous networking. This digital transformation is beginning to have a big impact on the energy and transportation sectors. If that trend continues, we could see a metamorphosis in the economy and society not unlike previous industrial revolutions in history. And given the pace of technology change today, the shift could happen much faster than ever before.

SAP Q417 DigitalDoubles Feature2 Image3 1024x572 Three Tips To Help Managers Understand Their EmployeesThe speed of change is dictated by the increase in digitalization of these three main sectors; expensive physical assets and processes are partially replaced by low-cost virtual ones. The cost efficiencies brought on by digitalization drive disruption in existing business models toward zero marginal cost, as we’ve already seen in entertainment and publishing. According to research company Gartner, when an industry gets to the point where digital drives at least 20% of revenues, you reach the tipping point.

“A clear pattern has emerged,” says Peter Sondergaard, executive vice president and head of research and advisory for Gartner. “Once digital revenues for a sector hit 20% of total revenue, the digital bloodbath begins,” he told the audience at Gartner’s annual 2017 IT Symposium/ITxpo, according to The Wall Street Journal. “No matter what industry you are in, 20% will be the point of no return.”

Communications is already there, and energy and transportation are heading down that path. If they hit the magic 20% mark, the impact will be felt not just within those industries but across all industries. After all, who doesn’t rely on energy and transportation to power their value chains?

That’s why businesses need to factor potentially massive business model disruptions into their plans for digital transformation today if they want to remain competitive with organizations in early adopter countries like China and Germany. China, for example, is already halfway through an US$ 88 billion upgrade to its state electricity grid that will enable renewable energy transmission around the country—all managed and moved digitally, according to an article in The Economist magazine. And it is competing with the United States for leadership in self-driving vehicles, which will shift the transportation process and revenue streams heavily to digital, according to an article in Wired magazine.

SAP Q417 DigitalDoubles Feature2 Image4 Three Tips To Help Managers Understand Their EmployeesOnce China’s and Germany’s renewables and driverless infrastructures are in place, the only additional costs are management and maintenance. That could bring businesses in these countries dramatic cost savings over those that still rely on fossil fuels and nuclear energy to power their supply chains and logistics. “Once you pay the fixed costs of renewables, the marginal costs are near zero,” says Rifkin. “The sun and wind haven’t sent us invoices yet.”

In other words, zero marginal cost has become a zero-sum game.

To understand why that is, consider the major industrial revolutions in history, writes Rifkin in his books, The Zero Marginal Cost Society and The Third Industrial Revolution. The first major shift occurred in the 19th century when cheap, abundant coal provided an efficient new source of power (steam) for manufacturing and enabled the creation of a vast railway transportation network. Meanwhile, the telegraph gave the world near-instant communication over a globally connected network.

The second big change occurred at the beginning of the 20th century, when inexpensive oil began to displace coal and gave rise to a much more flexible new transportation network of cars and trucks. Telephones, radios, and televisions had a similar impact on communications.

Breaking Down the Walls Between Sectors

Now, according to Rifkin, we’re poised for the third big shift. The eye of the technology disruption hurricane has moved beyond communications and is heading toward—or as publishing and entertainment executives might warn, coming for—the rest of the economy. With its assemblage of global internet and cellular network connectivity and ever-smaller and more powerful sensors, the IoT, along with Big Data analytics and artificial intelligence, is breaking down the economic walls that have protected the energy and transportation sectors for the past 50 years.

Daimler is now among the first movers in transitioning into a digitalized mobility internet. The company has equipped nearly 400,000 of its trucks with external sensors, transforming the vehicles into mobile Big Data centers. The sensors are picking up real-time Big Data on weather conditions, traffic flows, and warehouse availability. Daimler plans to establish collaborations with thousands of companies, providing them with Big Data and analytics that can help dramatically increase their aggregate efficiency and productivity in shipping goods across their value chains. The Daimler trucks are autonomous and capable of establishing platoons of multiple trucks driving across highways.

It won’t be long before vehicles that navigate the more complex transportation infrastructures around the world begin to think for themselves. Autonomous vehicles will bring massive economic disruption to transportation and logistics thanks to new aggregate efficiencies. Without the cost of having a human at the wheel, autonomous cars could achieve a shared cost per mile below that of owned vehicles by as early as 2030, according to research from financial services company Morgan Stanley.

The transition is getting a push from governments pledging to give up their addiction to cars powered by combustion engines. Great Britain, France, India, and Norway are seeking to go all electric as early as 2025 and by 2040 at the latest.

The Final Piece of the Transition

Considering that automobiles account for 47% of petroleum consumption in the United States alone—more than twice the amount used for generators and heating for homes and businesses, according to the U.S. Energy Information Administration—Rifkin argues that the shift to autonomous electric vehicles could provide the momentum needed to upend the final pillar of the economic platform: energy. Though energy has gone through three major disruptions over the past 150 years, from coal to oil to natural gas—each causing massive teardowns and rebuilds of infrastructure—the underlying economic model has remained constant: highly concentrated and easily accessible fossil fuels and highly centralized, vertically integrated, and enormous (and enormously powerful) energy and utility companies.

Now, according to Rifkin, the “Third Industrial Revolution Internet of Things infrastructure” is on course to disrupt all of it. It’s neither centralized nor vertically integrated; instead, it’s distributed and networked. And that fits perfectly with the commercial evolution of two energy sources that, until the efficiencies of the IoT came along, made no sense for large-scale energy production: the sun and the wind.

But the IoT gives power utilities the means to harness these batches together and to account for variable energy flows. Sensors on solar panels and wind turbines, along with intelligent meters and a smart grid based on the internet, manage a new, two-way flow of energy to and from the grid.

SAP Q417 DigitalDoubles Feature2 Image5 Three Tips To Help Managers Understand Their EmployeesToday, fossil fuel–based power plants need to kick in extra energy if insufficient energy is collected from the sun and wind. But industrial-strength batteries and hydrogen fuel cells are beginning to take their place by storing large reservoirs of reserve power for rainy or windless days. In addition, electric vehicles will be able to send some of their stored energy to the digitalized energy internet during peak use. Demand for ever-more efficient cell phone and vehicle batteries is helping push the evolution of batteries along, but batteries will need to get a lot better if renewables are to completely replace fossil fuel energy generation.

Meanwhile, silicon-based solar cells have not yet approached their limits of efficiency. They have their own version of computing’s Moore’s Law called Swanson’s Law. According to data from research company Bloomberg New Energy Finance (BNEF), Swanson’s Law means that for each doubling of global solar panel manufacturing capacity, the price falls by 28%, from $ 76 per watt in 1977 to $ 0.41 in 2016. (Wind power is on a similar plunging exponential cost curve, according to data from the U.S. Department of Energy.)

Thanks to the plummeting solar price, by 2028, the cost of building and operating new sun-based generation capacity will drop below the cost of running existing fossil power plants, according to BNEF. “One of the surprising things in this year’s forecast,” says Seb Henbest, lead author of BNEF’s annual long-term forecast, the New Energy Outlook, “is that the crossover points in the economics of new and old technologies are happening much sooner than we thought last year … and those were all happening a bit sooner than we thought the year before. There’s this sense that it’s not some distant risk or distant opportunity. A lot of these realities are rushing toward us.”

The conclusion, he says, is irrefutable. “We can see the data and when we map that forward with conservative assumptions, these technologies just get cheaper than everything else.”

The smart money, then—72% of total new power generation capacity investment worldwide by 2040—will go to renewable energy, according to BNEF. The firm’s research also suggests that there’s more room in Swanson’s Law along the way, with solar prices expected to drop another 66% by 2040.

Another factor could push the economic shift to renewables even faster. Just as computers transitioned from being strictly corporate infrastructure to becoming consumer products with the invention of the PC in the 1980s, ultimately causing a dramatic increase in corporate IT investments, energy generation has also made the transition to the consumer side.

Thanks to future tech media star Elon Musk, consumers can go to his Tesla Energy company website and order tempered glass solar panels that look like chic, designer versions of old-fashioned roof shingles. Models that look like slate or a curved, terracotta-colored, ceramic-style glass that will make roofs look like those of Tuscan country villas, are promised soon. Consumers can also buy a sleek-looking battery called a Powerwall to store energy from the roof.

SAP Q417 DigitalDoubles Feature2 Image6 Three Tips To Help Managers Understand Their EmployeesThe combination of solar panels, batteries, and smart meters transforms homeowners from passive consumers of energy into active producers and traders who can choose to take energy from the grid during off-peak hours, when some utilities offer discounts, and sell energy back to the grid during periods when prices are higher. And new blockchain applications promise to accelerate the shift to an energy market that is laterally integrated rather than vertically integrated as it is now. Consumers like their newfound sense of control, according to Henbest. “Energy’s never been an interesting consumer decision before and suddenly it is,” he says.

As the price of solar equipment continues to drop, homes, offices, and factories will become like nodes on a computer network. And if promising new solar cell technologies, such as organic polymers, small molecules, and inorganic compounds, supplant silicon, which is not nearly as efficient with sunlight as it is with ones and zeroes, solar receivers could become embedded into windows and building compounds. Solar production could move off the roof and become integrated into the external facades of homes and office buildings, making nearly every edifice in town a node.

The big question, of course, is how quickly those nodes will become linked together—if, say doubters, they become linked at all. As we learned from Metcalfe’s Law, the value of a network is proportional to its number of connected users.

The Will Determines the Way

Right now, the network is limited. Wind and solar account for just 5% of global energy production today, according to Bloomberg.

But, says Rifkin, technology exists that could enable the network to grow exponentially. We are seeing the beginnings of a digital energy network, which uses a combination of the IoT, Big Data, analytics, and artificial intelligence to manage distributed energy sources, such as solar and wind power from homes and businesses.

As nodes on this network, consumers and businesses could take a more active role in energy production, management, and efficiency, according to Rifkin. Utilities, in turn, could transition from simply transmitting power and maintaining power plants and lines to managing the flow to and from many different energy nodes; selling and maintaining smart home energy management products; and monitoring and maintaining solar panels and wind turbines. By analyzing energy use in the network, utilities could create algorithms that automatically smooth the flow of renewables. Consumers and businesses, meanwhile, would not have to worry about connecting their wind and solar assets to the grid and keeping them up and running; utilities could take on those tasks more efficiently.

Already in Germany, two utility companies, E.ON and RWE, have each split their businesses into legacy fossil and nuclear fuel companies and new services companies based on distributed generation from renewables, new technologies, and digitalization.

The reason is simple: it’s about survival. As fossil fuel generation winds down, the utilities need a new business model to make up for lost revenue. Due to Germany’s population density, “the utilities realize that they won’t ever have access to enough land to scale renewables themselves,” says Rifkin. “So they are starting service companies to link together all the different communities that are building solar and wind and are managing energy flows for them and for their customers, doing their analytics, and managing their Big Data. That’s how they will make more money while selling less energy in the future.”

SAP Q417 DigitalDoubles Feature2 Image7 1024x572 Three Tips To Help Managers Understand Their Employees

The digital energy internet is already starting out in pockets and at different levels of intensity around the world, depending on a combination of citizen support, utility company investments, governmental power, and economic incentives.

China and some countries within the EU, such as Germany and France, are the most likely leaders in the transition toward a renewable, energy-based infrastructure because they have been able to align the government and private sectors in long-term energy planning. In the EU for example, wind has already overtaken coal as the second largest form of power capacity behind natural gas, according to an article in TheGuardian newspaper. Indeed, Rifkin has been working with China, the EU, and governments, communities, and utilities in Northern France, the Netherlands, and Luxembourg to begin building these new internets.

Hauts-de-France, a region that borders the English Channel and Belgium and has one of the highest poverty rates in France, enlisted Rifkin to develop a plan to lift it out of its downward spiral of shuttered factories and abandoned coal mines. In collaboration with a diverse group of CEOs, politicians, teachers, scientists, and others, it developed Rev3, a plan to put people to work building a renewable energy network, according to an article in Vice.

Today, more than 1,000 Rev3 projects are underway, encompassing everything from residential windmills made from local linen to a fully electric car–sharing system. Rev3 has received financial support from the European Investment Bank and a handful of private investment funds, and startups have benefited from crowdfunding mechanisms sponsored by Rev3. Today, 90% of new energy in the region is renewable and 1,500 new jobs have been created in the wind energy sector alone.

Meanwhile, thanks in part to generous government financial support, Germany is already producing 35% of its energy from renewables, according to an article in TheIndependent, and there is near unanimous citizen support (95%, according to a recent government poll) for its expansion.

If renewable energy is to move forward in other areas of the world that don’t enjoy such strong economic and political support, however, it must come from the ability to make green, not act green.

Not everyone agrees that renewables will produce cost savings sufficient to cause widespread cost disruption anytime soon. A recent forecast by the U.S. Energy Information Administration predicts that in 2040, oil, natural gas, and coal will still be the planet’s major electricity producers, powering 77% of worldwide production, while renewables such as wind, solar, and biofuels will account for just 15%.

Skeptics also say that renewables’ complex management needs, combined with the need to store reserve power, will make them less economical than fossil fuels through at least 2035. “All advanced economies demand full-time electricity,” Benjamin Sporton, chief executive officer of the World Coal Association told Bloomberg. “Wind and solar can only generate part-time, intermittent electricity. While some renewable technologies have achieved significant cost reductions in recent years, it’s important to look at total system costs.”

On the other hand, there are many areas of the world where distributed, decentralized, renewable power generation already makes more sense than a centralized fossil fuel–powered grid. More than 20% of Indians in far flung areas of the country have no access to power today, according to an article in TheGuardian. Locally owned and managed solar and wind farms are the most economical way forward. The same is true in other developing countries, such as Afghanistan, where rugged terrain, war, and tribal territorialism make a centralized grid an easy target, and mountainous Costa Rica, where strong winds and rivers have pushed the country to near 100% renewable energy, according to TheGuardian.

The Light and the Darknet

Even if all the different IoT-enabled economic platforms become financially advantageous, there is another concern that could disrupt progress and potentially cause widespread disaster once the new platforms are up and running: hacking. Poorly secured IoT sensors have allowed hackers to take over everything from Wi-Fi enabled Barbie dolls to Jeep Cherokees, according to an article in Wired magazine.

Humans may be lousy drivers, but at least we can’t be hacked (yet). And while the grid may be prone to outages, it is tightly controlled, has few access points for hackers, and is physically separated from the Wild West of the internet.

If our transportation and energy networks join the fray, however, every sensor, from those in the steering system on vehicles to grid-connected toasters, becomes as vulnerable as a credit card number. Fake news and election hacking are bad enough, but what about fake drivers or fake energy? Now we’re talking dangerous disruptions and putting millions of people in harm’s way.

SAP Q417 DigitalDoubles Feature2 Image8 Three Tips To Help Managers Understand Their EmployeesThe only answer, according to Rifkin, is for businesses and governments to start taking the hacking threat much more seriously than they do today and to begin pouring money into research and technologies for making the internet less vulnerable. That means establishing “a fully distributed, redundant, and resilient digital infrastructure less vulnerable to the kind of disruptions experienced by Second Industrial Revolution–centralized communication systems and power grids that are increasingly subject to climate change, disasters, cybercrime, and cyberterrorism,” he says. “The ability of neighborhoods and communities to go off centralized grids during crises and re-aggregate in locally decentralized networks is the key to advancing societal security in the digital era,” he adds.

Start Looking Ahead

Until today, digital transformation has come mainly through the networking and communications efficiencies made possible by the internet. Airbnb thrives because web communications make it possible to create virtual trust markets that allow people to feel safe about swapping their most private spaces with one another.

But now these same efficiencies are coming to two other areas that have never been considered core to business strategy. That’s why businesses need to begin managing energy and transportation as key elements of their digital transformation portfolios.

Microsoft, for example, formed a senior energy team to develop an energy strategy to mitigate risk from fluctuating energy prices and increasing demands from customers to reduce carbon emissions, according to an article in Harvard Business Review. “Energy has become a C-suite issue,” Rob Bernard, Microsoft’s top environmental and sustainability executive told the magazine. “The CFO and president are now actively involved in our energy road map.”

As Daimler’s experience shows, driverless vehicles will push autonomous transportation and automated logistics up the strategic agenda within the next few years. Boston Consulting Group predicts that the driverless vehicle market will hit $ 42 billion by 2025. If that happens, it could have a lateral impact across many industries, from insurance to healthcare to the military.

Businesses must start planning now. “There’s always a period when businesses have to live in the new and the old worlds at the same time,” says Rifkin. “So businesses need to be considering new business models and structures now while continuing to operate their existing models.”

He worries that many businesses will be left behind if their communications, energy, and transportation infrastructures don’t evolve. Companies that still rely on fossil fuels for powering traditional transportation and logistics could be at a major competitive disadvantage to those that have moved to the new, IoT-based energy and transportation infrastructures.

Germany, for example, has set a target of 80% renewables for gross power consumption by 2050, according to TheIndependent. If the cost advantages of renewables bear out, German businesses, which are already the world’s third-largest exporters behind China and the United States, could have a major competitive advantage.

“How would a second industrial revolution society or country compete with one that has energy at zero marginal cost and driverless vehicles?” asks Rifkin. “It can’t be done.” D!


About the Authors

Maurizio Cattaneo is Director, Delivery Execution, Energy and Natural Resources, at SAP.

Joerg Ferchow is Senior Utilities Expert and Design Thinking Coach, Digital Transformation, at SAP.

Daniel Wellers is Digital Futures Lead, Global Marketing, at SAP.

Christopher Koch is Editorial Director, SAP Center for Business Insight, at SAP.


Read more thought provoking articles in the latest issue of the Digitalist Magazine, Executive Quarterly.

Comments

Let’s block ads! (Why?)

Digitalist Magazine