Hello I would like to do the fourier Transform of

```
Derivative[1][H1][t - L2[t]/c - L2primo[t]/c]
```

I know that its transform has to be:

```
i omega H1[omega]* Exp[- I omega (L2[t]/c + L2primo[t]/c)
```

I have considered L2[t] and L2primo[t] to be constant and not to be transformed…

In order to do that in mathematica I did this function:

```
Argomentof[e_] := Collect[e[[1, 2 ;;]], -1/c]
myFTd[f_, (q_: 1) expr_, \[Omega]_] := q*I* \[Omega]*f[\[Omega]]*Exp[I \[Omega] Argomentof[expr]];
```

if I do

```
myFTd[H1,L2primo[t]Derivative[1][H1][t - L2[t]/c - L2primo[t]/c] Derivative[1][L2][t])/c^2, \[Omega]]
```

I get:

```
(I Exp^(I \[omega] L2primo[]) \[Omega] H1[\[Omega]])/c^2
```

that is wrong…anyone can help?