• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Accenture’s Dell’Anno discusses data supply chain

January 30, 2015   BI News and Info

Corporations busy accumulating big data need to implement a data supply chain to turn it into useful business information, according to Accenture’s Vince Dell’Anno. As new architectures evolve, that calls for different tools at different stages, and different approaches in different industries.

For Dell’Anno — who, not coincidentally, managed to coax “data supply chain” into his job title — the supply chain analogy is key. Like commodities refined and delivered through a manufacturing supply chain, data also needs to be polished and brought to users.

“The challenge businesses have is how to access this data. This is forcing a dialog on many fronts within companies,” said Dell’Anno, managing director of information management for the data supply chain at Accenture’s analytics consulting group.

A data supply chain starts with the creation and ingestion of data . As the data is cleansed and distilled, as is done, for example, with raw oil products in the oil and gas supply chain, it gains in value. New data is often combined with other data. Ultimately it is packaged for an end user in a way that helps them make good business decisions.

The world is a staging area

The means for gathering data has changed in recent years to include new tool types. People, Dell’Anno said, are bringing data into the open source Hadoop data platform, using it as a staging area. “I’m seeing a willingness to explore these new technologies and see what they can do,” he said.

In this area, Dell’Anno sees many companies innovating around new technologies and bringing together data that is more varied and more voluminous than in the past.

Companies are re-architecting entire data infrastructures at companies, he said, and it often starts with open source Hadoop parallel data processing. “I am seeing the emergence of Hadoop as part and parcel of the big data ecosystem. Some industries and some companies are further along than others,” Dell’Anno said. “Almost all of them have deployed it in some way, even just as a way to lower the cost of [consuming] more data.”

“They are either in production, or on their way,” he said. “In fact, I don”t see Hadoop as new anymore.”

What is new is how companies are trying to leverage Hadoop. That means more work will be directed at improving data handling in later stages of the data supply chain, ones that focus on delivery of usable analytics derived from Hadoop.

But, he added, moving the data through the latter stages of a data supply chain can prove to be a hurdle — especially for companies that have tens of thousands of reports in the works at any given time.

Leading-edge firms are looking for cost-effective ways of combining output from tools like Hadoop with data visualization software like Tableau, said Dell’Anno. That approach could well mean running hybrid environments — ones that mix existing data technology with newer innovations — at scale. And, in many instances, it could mean running reports for tens of thousands of end users, he said.

“The job is to leverage all the data that you have at your disposal. There’s new data being born every day, but that doesn’t necessarily translate into information,” said Dell’Anno. To do that, it is necessary to learn how today’s different data processing tools work together, and how to deliver results.

Up the data supply chain, or when to munge

“What I see is people moving from proofs-of-concept to looking for value in an operational way,” Dell’Anno said. Along the way, he added, volume of data can become an issue. Data professionals have to ask themselves whether they should sample the data, or work with the entire data set. That can become an increasingly difficult question as Hadoop applications accumulate more and more data.

To answer the question, data analysts have to look at the data. “There is no one-size-fits-all approach,” he said. Certainly, an area like fraud detection can require a larger sample size than a recommendation engine on an e-commerce website.

Decisions on handling data vary for different data supply chains in different industries. In retail companies, for example, managers need to figure out what appropriate use of data comprises, according to Dell’Anno. That touches on what people are starting to call “the creepy factor” in big data, with Target Inc.’s 2012 prediction of a teen customer’s pregnancy being a prime example.

“You have to understand your audience in order to know how to marry, for example, ERP data with social data, or how to munge ERP and non-ERP,” he said.

Recommended article: Chomsky: We Are All – Fill in the Blank.
This entry passed through the Full-Text RSS service – if this is your content and you’re reading it on someone else’s site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers.


SearchBusinessAnalytics: BI, CPM and analytics news, tips and resources

Accenture's, chain, data, Dell'Anno, discusses, supply
  • Recent Posts

    • Database version control: Getting started with Flyway
    • Support CRM with New Dynamics 365 Field Service Mobile App
    • 6 Strategies for Achieving Your Business Goals in the New Year
    • Researchers propose using the game Overcooked to benchmark collaborative AI systems
    • Oracle Launches Version 21c
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited