• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Doc Ingo, what model should I use?

June 21, 2018   BI News and Info
teach fish sq Doc Ingo, what model should I use?

One of the most frequent questions I get asked is: “Ingo, I am from Industry X and my data looks like Y and my colleague recommended to use model Z – what is your opinion on what model to use?”

In general, my philosophy for model selection is very simple: you should use whatever model type and parameterization works best for your data on a fitness function of your interest. As a consequence, I simply do not believe in recommendations like “this algorithm worked for me” or “this is a standard in our industry”. This does not mean that a particular model type is also the best solution for YOUR case. So, in this spirit, I refrain from giving specific model recommendations…

BUT, I would like to explain a well-proven framework for model selection:

1. Fitness Function

It all starts with defining the fitness function first. Is it a regression problem? What type of performance measurement can be used then to measure the success of a model? Relative error maybe? Or RMSE? Or correlation? Error costs? Or is it a classification problem? Is accuracy doing the trick for you or do you need a specific precision or recall for one of the classes? Whatever works, stick with it for now.

2. Try Models & Parameters

Then try out the different model types / function types / parameterizations and measure the performance according to the fitness function defined in point 1. Obviously, not every model can be used on every data set. You can get some guidance for what might work on your data from our Machine Learning Algorithm reference guide.

3. Correct Validation

You need to make sure that you validate the models correctly and in a comparable fashion. I wrote a complete white paper on correct model validation. I also wrote a bit about focusing too much on overfitting which is relevant for this as well. Bottom line: overfitting always happens but it doesn’t need to be a problem if you correctly validate the model.

4. Identify Potential Shortcuts

While you are going through your model candidates, notice what kind of models work better than others. This might be helpful to prune the search space somewhat. For example, if a k-NN works better with high numbers of k than with smaller ones, the problem is probably more linear in nature and you might want to focus more on those and less on the highly non-linear model types.

5. Pick a Model

At the end, go with the model which delivers the best correctly validated performance estimation. Not the one which was recommended by a colleague. You might even want to go with a sub-optimal model for other reasons like understandability or runtime for model computation. Finally, you might want to further optimize the model as well with more parameter optimization or (automatic) feature engineering.

Or you take the shortcut and let RapidMiner do all of this work with our new Auto Model feature 😊

I know, this is probably not the answer people are looking for when they ask, but I think it is better than just saying “Go with an RBF-kernel SVM”. It also follows the philosophy of teaching to fish vs. handing over a fish… 😉

Let’s block ads! (Why?)

RapidMiner

Ingo, model, Should
  • Recent Posts

    • THEY CAN FIND THE GUY WHO BROKE A WINDOW BUT NOT A MURDERER?
    • TIBCO4Good and She Loves Data Offer Free Data Skills Workshops During a Time of Vulnerability
    • Aurora partners with Paccar to develop driverless trucks
    • “Without Data, Nothing” — Building Apps That Last With Data
    • SO MUCH FOR GLOBAL WARMING, EH?
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited