I need to create density plot in Mathematica to compare with results in 2D plots. This would be done by plotting gg for different values of d,

[Upsilon]1 = n1*([Omega]1/c);

[Upsilon]2 = n2*([Omega]2/c);

a1 = (I*[Upsilon]1 – ([Omega]1/

c)*[Xi]1)/([Omega]1*[Epsilon]0*[Epsilon]);

a2 = (I*[Upsilon]2 – ([Omega]2/c)*[Xi]2)/([Omega]2*[Mu]0*[Mu]);

[Zeta]1 = Sqrt[([CapitalKappa]^2 + (n1)^2*[Chi]^2/c^2)]/(

n1*Sqrt[([CapitalKappa]^2 + [Chi]^2/c^2)]);

[Zeta]2 = Sqrt[([CapitalKappa]^2 + (n2)^2*[Chi]^2/c^2)]/(

n2*Sqrt[([CapitalKappa]^2 + [Chi]^2/c^2)]);

```
r1 = -(((ζ1 + ζ2)*(a2*(η)^2 + a1) -
I*η*(ζ1*ζ2 - 1)*(a2*a1 -
1))/((ζ1 + ζ2)*(a2*(η)^2 + a1) +
I*η*(ζ1*ζ2 + 1)*(a2*a1 - 1)));
r2 = ((ζ1 + ζ2)*(a2*(η)^2 - a1) -
I*η*(ζ1*ζ2 - 1)*(a2*a1 -
1))/((ζ1 + ζ2)*(a2*(η)^2 + a1) +
I*η*(ζ1*ζ2 + 1)*(a2*a1 - 1));
r3 = -2*((η*(ζ2 + ζ1*a2*
a1))/((ζ1 + ζ2)*(a2*(η)^2 + a1) +
I*η*(ζ1*ζ2 + 1)*(a2*a1 - 1)));
r4 = -2*((η*(ζ1 + ζ2*a2*
a1))/((ζ1 + ζ2)*(a2*(η)^2 + a1) +
I*η*(ζ1*ζ2 + 1)*(a2*a1 - 1)));
t2 = 1/(2*Pi)^2*Κ*
Log[1 - ((r1)^2 + (r2)^2 - 2*(r3)^2)*
Exp[-2*Sqrt[(Κ^2 + χ^2/c^2)]*d] + ((r3)^2 +
r1*r2)^2*Exp[-4*Sqrt[(Κ^2 + χ^2/c^2)]*d]];
gg := NIntegrate[t2, {Κ, 0, 90}, {χ, 0, 90}]
Show[Plot3D[Im[gg], {d, 0, 10}, {Δ, 0, 1}, Mesh → None,
PlotStyle → Directive[Opacity[0.75], Specularity[White, 50]],
ColorFunction → "Rainbow", PlotTheme → "Detailed", FaceGrids → None],
SliceContourPlot3D[Im[gg], z ⩵ -1, {d, 0, 10}, {Δ, 0, 1},
{z, -1, 1}, ColorFunction → "Rainbow", Boxed → False]]
```