• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

New data landscape augurs discovery-based architectures

May 17, 2016   BI News and Info

The changes in the data landscape over recent years have ramifications that are not immediately apparent. Some basic tenets of the data profession are coming under review. If nothing else, these shifts require flexibility on the part of data practitioners, according to Lakshmi Randall, principal at the Unabashed Advice consultancy. In 19-plus years, she has focused to a great extant on data preparation and quality issues. We caught up with her following her appearance on a panel that pitted data warehouses against data lakes at the recent Enterprise Data World 2016 event in San Diego.

I suppose pitting data warehouses against data lakes has some purpose. But isn’t it just a fact that data landscape is shifting? How do you see the warehouse and the lake today?

Lakshmi Randall: What is breaking down is a strictly linear approach to data management and analytics. That is, one in which data travels a step-by-step path from acquisition to insights. It works when you understand the data, when it’s predominantly structured and it originates from familiar data sources.

But in the case of big data — notes from a physician or insurance claims form data — the data is semi-structured or unstructured, making the linear approach no longer feasible. These examples require discovering the data sources, filing the data and facilitating the understanding of the data before we decide on the path to the insights.

 New data landscape augurs discovery based architecturesLakshmi Randall

You could move it to the data warehouse or, after the discovery process, you find it’s not useful and you throw it away. I think with the change in the data landscape, you have to think about more than just the linear approach. You have instead to think also about discovery and exploratory approaches. Based on that, you decide on the next best actions for either processing or storing the data.

As the data landscape is changing, we are seeing new types of data. We should be open to different architectures, where it is appropriate. Data governance is still a key, but you have to have some level of agility and flexibility too.

With the new use cases, data becomes part of a more iterative process. Lakshmi Randall principal, Unabashed Advice

There seems a growing need for IT to support a somewhat different user than they may have in the past — something like a power user on steroids, one might say.

Randall: Well, different use cases drive the different tactics. Data becomes part of a more iterative process. The personas that must be supported change. It is not just a persona that typically does day-to-day analysis. It may be what you call a power user or a data discovery user or a data scientist. It may be someone who combines the skills of domain knowledge along with some level of technical knowledge, a hybrid persona. Really, there is a need for a continuum of personas in the enterprise.

Let’s look at another aspect of the data landscape: NoSQL. What are some forces driving interest in using NoSQL?

Randall: When you’re modeling data that holds true relationships — ones that are more affinity driven — data modeling is different than it is with a traditional relational database. That is a great example of the need for a NoSQL database.

For example, as part of a customer experience management solution, there are different touch points in the customer journey. These can be across many different channels. And finding those special connections, I think, is only possible if we have NoSQL, given that it stores the data in something close to its natural form. That is, as opposed to having to translate the data into rows and columns. People are finding that there are some use cases, like this one, that are really good candidates for NoSQL databases. It all has to do with the nature of the data. If it is relational data, then relational databases and data warehouses are better candidates.

In your experience as of late, where is the data profession on all this? For example, with governance and modeling, there can be a natural inclination to ask for more upfront control. Are you seeing changes in the way teams are organizing?

Randall: The business is justified in demanding the ability to conduct ad-hoc analysis or to have access to the appropriate and relevant data in order to accelerate the time-to-insights. At the same time, the business should be a sponsor of IT in establishing governance and stewardship initiatives.

Today, the data profession extends across IT and the business. And the reality is the enterprise needs a continuum of personas — that means people with quantitative skills, qualitative skills, domain experts, process experts, data scientists, data stewards and so on — to support the multitude of business objectives.

Let’s block ads! (Why?)


SearchBusinessAnalytics: BI, CPM and analytics news, tips and resources

architectures, augurs, data, discoverybased, landscape
  • Recent Posts

    • WATCH: ‘Coming 2 America’ Movie Review Available On Amazon Prime & Amazon
    • IBM launches AI platform to discover new materials
    • 3 Ways a Microsoft Dynamics 365 Supply Chain Management and EDI Integration Enhance E-Commerce CRM Strategy
    • The Neanderthals
    • What the swarm of new Azure announcements mean
  • Categories

  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited