• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Parameter estimation using LogLikelihood

August 2, 2020   BI News and Info
 Parameter estimation using LogLikelihood

I’m trying to understand Likelihood methods with parameter estimation in mind. To this end I am trying to construct small examples that I can play with. Let’s say I have some data which I know (or suspect follows the function)
$ $ f(x) = (x + x_0)^{2}$ $
and I want to find out the value of the parameter $ x_{0}$ and the associated error using likelihood methods.

Let us then make some pretend experimental data:

f[x0_, x_] := (x + x0)^2
  
ExperimentData = Table[{x, f[-1.123, x] + RandomVariate[NormalDistribution[0, 0.25]]}, {x, 0, 3, 0.1}];

Then let us construct some test data where I “guess” my parameter $ x_{0}$ . I replace $ x_{0}$ with the parameter $ \theta$ to represent my test value:

TestData = 
Table[
        {\[Theta], Table[{x, f[\[Theta], x]}, {x, 0, 3, 0.1 }]},
        {\[Theta], 0.5, 1.6, 0.1}
     ];

How can I use LogLikelihood to make to make a parameter estimation of $ x_{0}$ . Using my TestData? The motivation is if I cannot construct a pure function, for example if I generate my test data from a numeric intergeneration.

My approach so far is to maximise the log-likelihood of the “residuals”

X = ExperimentData[[All, 2]];
MLLTest = 
  Table[
        \[Theta] = TestData[[i, 1]];        
        F = TestData[[i, 2]][[All, 2]];
        MLL = 
    FindMaximum[
      LogLikelihood[NormalDistribution[\[Mu], \[Sigma]], 
       X - F], {{\[Mu], 0}, {\[Sigma], 0.25}}][[1]];
        {\[Theta], MLL},
        {i , 1, Length[TestData]}
    ];

Then if I plot the Maximum Log-Likelihood as a function of my guess parameter $ \theta$ .

However this is clearly wrong, so I think I misunderstand something about the Log-Likeihood in this context.

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

estimation, LogLikelihood, Parameter, using
  • Recent Posts

    • Search SQL Server error log files
    • We were upgraded to the Unified Interface for Dynamics 365. Now What?
    • Recreating Art – the unexpected way
    • Upcoming Webinar: Using Dynamics 365 to Empower your Marketing and Sales Teams with Digital Automation
    • Center for Applied Data Ethics suggests treating AI like a bureaucracy
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited