• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

The pros and cons of Python for enterprises

April 11, 2020   BI News and Info
Chess board The pros and cons of Python for enterprises

If you’re reading this, you’re probably intrigued by the potential for machine learning to deliver incredible results for your business. But you might also be overwhelmed by how many ways there are to get started. Should you take a visual, code-based, or automated approach? Should you rely on open-source tech, commercial products, or a mix of both?

If you’ve explored open-source tooling, it’s likely you’ve heard about the coding language Python. Python is the most popular language in the world right now and it’s the de facto standard in coding for machine learning—and for a reason. Python has a long list of benefits.

In this article, we’re going to discuss some of the pros of Python—why it’s uniquely equipped for the world of data science and machine learning —as well as some of the challenges that relying exclusively on Python can present, especially in an enterprise environment. We’ll also talk about how RapidMiner can be paired up with Python to enhance the language’s power and overcome some of its enterprise shortcomings.

The pros of Python for machine learning

You might be curious what makes Python so well suited for machine learning as opposed to the many other programming languages available. While there are many reasons why Python is such a ubiquitous programming language, here are three things that make it so popular for machine learning.

Broad usage

Python is one of the most widely used programming languages. In JetBrains’ 2019 State of Developer Ecosystem report, Python was the most studied programming language. It’s also the most widely used, and has nearly twice as much usage as the second most used language. This means that it has extremely high compatibility and applicability to an extremely wide range of use cases, including machine learning. Python is also an interpreted language, meaning you don’t need to struggle with compiling code. Using Jupyter Notebook, you can start inputting code and see the results immediately as you type.

Large, supportive community

There are a tremendous number of Python libraries which are created and supported by an active and open-source community, and this is especially true within the domain of data science. Additionally, it’s easy to find educational material on the subject, from in-depth research papers to video tutorials. Chances are, if you need to build something for your machine learning project, someone else has already written code or built a library you can use to get started.

Free and open source

Of course, a factor that cannot be overlooked is price. Python is free, so anyone with a computer can start using it. This accessibility is one of the main drivers in Python having the high adoption rate that it has among data scientists specifically, as well as programmers in general. Python being open source is also one of the key factors in it having such a large and vibrant community.

The cons of Python for enterprises

Despite Python’s widespread use and popularity, it certainly isn’t perfect, especially in an enterprise environment. Here are three of the most common problems that present themselves when companies try to rely exclusively on Python.

Low code reuse

One of the biggest challenges facing the use of Python at the enterprise level is a low level of code reuse. Although theoretically tools like GitHub make it easy for data scientists and programmers to archive their code in a way that others can access it and use it, this isn’t typically what happens on the ground.

The bigger a company gets, the more of a problem this becomes, as different teams curate their own code repositories for specific use cases. This makes it hard for other teams to even know that the code they need exists, never mind extracting the useful bits from another team’s project-specific code.

The result of all of this is that you have a lot of different coders being paid to write very similar pieces of code over and over again.

Exclusion of non-coders

Another challenge of relying on Python is that it can exclude non-coders from helping to test and develop machine learning models. This might seem a bit counter-intuitive at first glance—after all, isn’t it a coder’s job to write code? Yes, but—

If you’re forced to rely on those familiar with Python to roll out every ML project you’re hoping to work on, you can easily end up in a coding bottleneck, where you have more projects that you can effectively get into production because you’re relying on a limited number of people who can actually execute the projects.

Unexplainability

Getting buy-in from important stakeholders is something that plagues enterprise-level machine learning projects. ML concepts can be hard to explain in the first place. Add to that the fact that the code that does all of the heavy lifting is inscrutable to anyone who doesn’t have a background in coding and machine learning, and you’ve got a recipe for leadership being unwilling to take a risk on something they can’t fully understand. This can slow down approvals and even kill projects before they have a chance to shine.

How RapidMiner can help

RapidMiner’s mission is to provide real data science, fast and simple. We understand that machine learning is a team sport, and that there are diverse groups and users across an organization that need to work together on ML projects.

Our aim is to make it easier for these diverse groups to work within the RapidMiner platform as effectively as possible – for teams made up of experienced coders, newcomers to data science, and anyone in between.

By co-deploying JupyterHub with RapidMiner Server, we’ve made it easier for full-time coders to work more collaboratively with non-coders and avoid Python pitfalls, including the ones that we noted above.

You can now edit, create, develop, test and run Python code all from within the RapidMiner platform. Having the ability to code in the RapidMiner platform with JupyterHub makes it easier for full-time coders package up the work they’ve done and share it with both other coders and non-coders.

For data loving people who aren’t quite ready to experiment with Python coding, we’ve created RapidMiner Go—a highly differentiated automated machine learning solution that’s built specifically for users with no previous data science experience to further help alleviate the coding bottleneck.

Getting started with a machine learning project can be overwhelming. Request a free AI assessment and RapidMiner will help by creating and analyzing a portfolio of use cases in terms of technical feasibility and business impact.

Let’s block ads! (Why?)

RapidMiner

Cons, enterprises, Pros, Python
  • Recent Posts

    • C’mon hooman
    • Build and Release Pipelines for Azure Resources (Logic Apps and Azure Functions)
    • Database version control: Getting started with Flyway
    • Support CRM with New Dynamics 365 Field Service Mobile App
    • 6 Strategies for Achieving Your Business Goals in the New Year
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited