• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

What Is Edge Computing (& Why Should You Care)?

February 4, 2021   BI News and Info
pexels joagbriel 1753922 2 What Is Edge Computing (& Why Should You Care)?

Benefits (and a few challenges) of edge computing

Modern edge computing architecture allows data from IoT devices to be processed at the edge of the network, either in lieu of being sent to a data center or cloud, or before being set. This arrangement presents several clear benefits: 

  • Speed: Because it effectively eliminates lag times that come with distance, edge computing can facilitate real-time data processing without latency. This is critical for devices and applications that depend on short and predictable response times, like autonomous vehicle operating systems (as milliseconds can really matter on a busy roadway) and digital-enabled factories (where smart devices perpetually monitor the manufacturing process).
  • Connection: In addition to being able to improve response times, edge computing can offer complex processing (like predictions from a model) in situations where cloud connectivity is unavailable or has limited capacity, like ships at sea or rural utility substations.
  • Security: Cloud computing architecture is inherently centralized, which means a cloud-reliant network is especially vulnerable to a single attack or power outage. Edge computing effectively disperses this kind of risk, as data is largely processed on local devices and storage can be distributed between local servers and data centers as needed.
  • Cost: Edge computing helps you categorize and manage data, which can save you a lot of money associated with bandwidth and storage costs. A simple example of this is a security camera in a warehouse. Most of the time such a camera is going to be recording empty space or common activity. Sending that footage to the cloud would be a waste of both bandwidth and the cost of storage those hours of footage. If you had an AI-powered security camera, though, it could analyze imagery, detect anything out of the ordinary, and only prioritize relevant footage for cloud storage. That’s effectively how edge computing works, but on a larger scale.

As with any technological development, there are also associated challenges, namely:

  • Security: Yes, security is listed here as both a benefit and a challenge. That’s because while the cloud presents a centralized vulnerability, as described above, edge devices represent a distributed vulnerability, in that each device can be compromised or otherwise operate incorrectly. In the case of cloud servers, you might well be using something like AWS that has the most advanced security available, but if you’re running your own systems, you’ll have to set up security on your own.
  • Storage requirements: Because less data is being sent to the cloud, edge computing requires higher storage requirements on the edge devices themselves. And even though storage is less expensive than ever before, it still requires power costs, which need to be factored into any investment. As mentioned above, though, doing processing on-site can help optimize storage needs so you’re only saving essential data instead of everything.
  • Maintenance requirements: Maintenance issues are similar to security ones, as the distributed architecture means there are more network combinations and discrete computing nodes that have to be maintained.

The issues raised above are indeed challenges, but they’re problems that can easily addressed. Every network architecture will have its shortcomings, but when you integrate edge computing into your network you’re providing yourself with increased flexibility to customize as necessary.

This is especially true in circumstances where remote servers can not be immediately accessed, such as on ships at sea. Right now, for instance, the U.S. Navy is preparing to install edge computing infrastructure aboard its fleet of aircraft carriers so that these distant ships can run critical (and data-rich) applications independently of a central network.

This same problem impacts the industrial transportation industry as well, which is why cargo ships, freight trains, and even semi-trailers are implementing edge architectures to overcome communication limitations, process sensor data, analyze fuel consumption, and even assist with autonomous navigation.

The future of edge computing

For the moment, edge computing is not a replacement for the cloud, but rather a complementary piece of network technology. Cloud-based data centers are still uniquely positioned to handle large flows of data (including massive files) and run applications that are not critically time-sensitive.

But the volume of data generated from the Internet of Things will continue to grow, and edge devices and servers are going to be necessary to process it at the source. That’s why research firm Gartner has predicted that by 2025, a staggering 75 percent of enterprise data will be generated and processed at “the edge.”

Edge computing is already being leveraged in industrial and manufacturing sectors, and the use cases described ahead will spur further applications in the near future:

  • Increased data collection: Edge computing allows sensors to gather critical data in remote locations where cloud connections are not stable or cost-effective, such as on cargo ships (as discussed above) or at oil fields or underground mining sites.
  • Increased interoperability: IoT service providers offer different (and proprietary) devices, APIs, and data formats, which has led to interoperability issues. Edge computing architecture, though, provides a standard platform for IoT applications and converts communication protocols for older “legacy” machines.
  • Increased cost savings: Edge computing immediately reduces costs associated with bandwidth and data storage. And by facilitating real-time processing of sensor data, it can reduce energy consumption by automatically adjusting lighting, cooling, and other environmental controls and ensure machines are operating consistently and productively.

As these examples make clear, it’s not strictly edge computing itself that is so valuable, but rather how it provides a cost-effective way to scale up IoT adoption. Increased use of IoT-enabled sensors and machinery, in turn, provides greater opportunities for machine learning and AI solutions.

Wrapping up

With ever-increasing amounts of data been generated every day, we’re sure to see the demand for—and the impact of—edge computing solutions grow in the coming years. If you think an edge computing solution would be helpful for your organization, schedule a free AI assessment and we’ll show you how running AI and ML models at the edge can optimize and streamline your business.

Let’s block ads! (Why?)

RapidMiner

care, Computing, edge, Should
  • Recent Posts

    • Now make soup!
    • Attach2Dynamics Or SharePoint Security Sync – Choose your smart app for effective document management in Dynamics 365 CRM/Power Apps.
    • 5 jobs that you should apply for this week (before it’s too late)
    • SQL Server authentication methods, logins, and database users
    • DAE solver fails for system of coupled partial differential equations
  • Categories

  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited