I am trying to evaluate the integral below however when the parameter \alpha is selected to a positive real number other than zero no solution is found. In fact either the output is the integral itself or the local kernel stops evaluating (ie you hear a “beep”). I attach the code. Any suggestion would be helpful.
ao := 0.1;
a1 := 0;
(*a2=0.03*)(*For compatible strain a2=b1*)
bo := 0.1;
b1 := 0;
b2 := 0;
co := ao + I*bo;
c1 := 1/4 (a1 - b2 + 2 I*b1);
c2 := 1/2 (a1 + b2);
(*Inclusion and Matrix properties*)
μ1 = 1;
μ2 = .25 μ1;
R = 1;
yo = -2 R;
d[t_] := R^2/(t - I*yo) - I*yo;
p[t_] := -I*yo;
h[t_] := -yo^2;
dover[t_] := R^2/(t + I*yo) + I*yo;
pover[t_] := I*yo;
hover[t_] := -yo^2;
L[t_] := D[(dover[t] - pover[t]), t];
L1[t_] := dover[t] - pover[t];
L2[t_] := 2*dover[t]*(D[dover[t], t]) - D[hover[t], t];
L3[z_] := (dover[z]*dover[z]) - hover[z];
M[t_] := (co\[Conjugate]*t + co*p[t] + c2*t*p[t] +
c1\[Conjugate]*t^2 + c1*h[t]);
Γ[t_] := -μ1*(D[M[t], t]);
N1[t_] := (co\[Conjugate]*L[t] + c2*L1[t] + c2*t*L[t] +
c1\[Conjugate]*L2[t]);
Q[t_] := (co\[Conjugate]*L1[t] + c2*t*L1[t] + c1\[Conjugate]*L3[t]);
Gprime[t_, α_] := μ1*(D[N1[t], t]) - I*((1/μ2) - (1/μ1))*μ1*α*(D[Q[t], t]);
lambdaprime[z_, α_] = Γ[z] + Integrate[Gprime[t, α]*
e^(-I*((1/μ2) + (1/μ1))*α*t), {t, -I*Infinity, z},
Assumptions -> Element[α, Reals] && α >= 0]*(e^(I*((1/μ2) + (1/μ1))*α*z))