• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

4 Benefits of Using Apache Kafka in Lieu of AMQP or JMS

May 27, 2016   Big Data

Kafka is the kind of product that is relatively easy to describe at a high level, but when it comes down to explaining the deeper advantages and potential use cases, it gets a bit harder to fully express. Fortunately, Kafka does have excellent documentation, which delves nicely into all of the design and implementation features and functionality. To sum it up as briefly as possible, Kafka is a distributed publish-subscribe messaging system that was created as a fast, scalable, and durable alternative to existing solutions. It is designed to broker enormous message streams for extremely low-latency analysis within Enterprise Apache Hadoop.

Kafka 5 26 16 4 Benefits of Using Apache Kafka in Lieu of AMQP or JMS

Kafka is particularly useful for working with real-time data, such as that related to managing semi-truck fleets and industrial HVAC units.

Like most similar systems, Kafka keeps up with feeds of messages within topics. Producers create the data within the topics and consumers read from those topics. Kafka is distributed, therefore, topics are separated by partitions and replicated across various nodes. These messages are just simple byte arrays; the developers can utilize them in order to store any object in any format that they wish, including Avro, JSON, and String. Developers can also opt to attach a key to a message, guaranteeing that all messages with that specific key will get to the same partition.

During consumption from a topic, you can also configure a group with multiple consumers. Each of the consumers in a specific group will access messages from a particular subset of partitions within the topics they subscribe to. This will assure that every message is delivered to one consumer in the group, and all of the messages that carry the same key make it to the same consumer.

The uniqueness of Kafka lies in the fact that it handles each topic partition as a log (that is, an ordered set of messages), and that every message within a given partition is assigned a unique, one-of-a-kind offset. Kafka doesn’t try to track which message was actually read by what consumer and just hold on to unread messages. Instead, it holds all of the messages for a pre-specified amount of time, and consumers are charged with tracking their location within each log. So, Kafka is able to support a huge quantity of consumers and hold tremendous amounts of data without incurring much at all in the way of overhead.

Like most similar systems, Kafka keeps up with feeds of messages within topics. Producers create the data within the topics and consumers read from those topics. Kafka is distributed, therefore, topics are separated by partitions and replicated across various nodes. These messages are just simple byte arrays; the developers can utilize them in order to store any object in any format that they wish, including Avro, JSON, and String. Developers can also opt to attach a key to a message, guaranteeing that all messages with that specific key will get to the same partition.

During consumption from a topic, you can also configure a group with multiple consumers. Each of the consumers in a specific group will access messages from a particular subset of partitions within the topics they subscribe to. This will assure that every message is delivered to one consumer in the group, and all of the messages that carry the same key make it to the same consumer.

The uniqueness of Kafka lies in the fact that it handles each topic partition as a log (that is, an ordered set of messages), and that every message within a given partition is assigned a unique, one-of-a-kind offset. Kafka doesn’t try to track which message was actually read by what consumer and just hold on to unread messages. Instead, it holds all of the messages for a pre-specified amount of time, and consumers are charged with tracking their location within each log. So, Kafka is able to support a huge quantity of consumers and hold tremendous amounts of data without incurring much at all in the way of overhead.

Kafka was designed to deliver three distinct advantages over AMQP, JMS, etc.

Business 5 26 16 4 Benefits of Using Apache Kafka in Lieu of AMQP or JMS

Kafka is able to handle many terabytes of data without incurring much at all in the way of overhead.

1. Kafka is Highly Scalable

Kafka is a distributed system, which is able to be scaled quickly and easily without incurring any downtime.

2. Kafka is Highly Durable

Kafka persists the messages on the disks, which provides intra-cluster replication. This makes for a highly durable messaging system.

3. Kafka is Highly Reliable

Kafka replicates data and is able to support multiple subscribers. Additionally, it automatically balances consumers in the event of failure. That means that it’s more reliable than similar messaging services available.

4. Kafka Offers High Performance

Kafka delivers high throughput for both publishing and subscribing, utilizing disk structures that are capable of offering constant levels of performance, even when dealing with many terabytes of stored messages.

Kafka is a natural companion to your enterprise Hadoop infrastructure if you need a real-time solution that provides ultra-fast and reliable messaging services. To get started accessing and integrating your mainframe data into Apache Hadoop and to begin leveraging Kafka, visit Syncsort for the Hadoop and data integration solutions you need. See all of Syncsort’s Big Data Integration solutions here.

Let’s block ads! (Why?)

Syncsort blog

AMQP, Apache, benefits, Kafka, Lieu, using
  • Recent Posts

    • The Dynamics 365 Sales Mobile App Helps Salespeople Stay Productive From Anywhere
    • THEY CAN FIND THE GUY WHO BROKE A WINDOW BUT NOT A MURDERER?
    • TIBCO4Good and She Loves Data Offer Free Data Skills Workshops During a Time of Vulnerability
    • Aurora partners with Paccar to develop driverless trucks
    • “Without Data, Nothing” — Building Apps That Last With Data
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited