• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

AI uses genre metadata to track the evolution of Ancient Greek text

March 14, 2019   Big Data
 AI uses genre metadata to track the evolution of Ancient Greek text

Ageōmétrētos mēdeìs eisítō. That’s Greek for “Let no one untrained in geometry enter” — the motto famously inscribed above the entrance to Plato’s Academy. It’s straightforward enough (if you’re fluent), but not every case is so clear-cut. Interpreting ancient languages involves guesswork about semantics, as well as polysemy (the coexistence of many possible meanings for a word or phrase), and context.

Researchers at the Alan Turing Institute, the University of Warwick, the University of Helsinki, and Amazon propose a novel solution in a newly published paper. The idea involves neural networks, or layered mathematical functions that model biological neurons. Dubbed Genre-Aware Semantic Change for Ancient Greek (GASC), it leverages categorical metadata about target texts’ genres to uncover the evolution of meanings in Ancient Greek data sets.

AI systems that model semantic change aren’t new, per se — researchers have employed a range of topic-based and graph-based natural language processing models for interpretation tasks. But the authors note that few focus on ancient languages and most don’t account for language variation features. By contrast, the team’s work goes beyond literary data sets and historical language data and directly addresses questions about genre — i.e., which genre is most likely associated with a given sense, what is an unusual sense for a genre, and which genres have the most similar senses.

“Over time, new words enter the lexicon, others become obsolete, and existing words acquire new senses,” the paper’s authors write. “For example, in Old English ‘thing’ meant ‘a public assembly’, and currently it more generally means ‘entity’ … The close relationship between innovation and variation is well known in historical linguistics, and critical to ancient languages, for which balanced corpora are not available due to the limited amount of data at our disposal; therefore models need to explicitly account for confounding variables, like genre.”

The researchers first compiled a preprocessed corpus — the Diorises Annotated Ancient Greek Corpus — containing over 10 million words from 820 poems, dramas, oratories, philosophies, essays, narratives, atlases, religious scripts, and letters dated between the 8th century BC and the 5th century AD. Each was lemmatized (grouped together in the inflected forms) and part-of-speech tagged, and the model’s task was to detect the sense associated with target words in given contexts and describe their evolution over time.

“In technical texts, we expect polysemous words to have a technical sense,” the team explains. “On the other hand, in works more closely representing general language (comedy, oratory, historiography) we expect the words to appear in their more concrete and less metaphorical senses; in a number of genres, such as philosophy and tragedy, we cannot assume that this distribution holds.”

To evaluate the AI system’s performance, the researchers created a secondary data set and framework: They chose 50 target words in the corpus that could be identified as polysemous, including 17 words from Greek technical vocabulary and 33 words from the highest-frequency lemmas (forms chosen to represent the lexemes, or units of meaning) in the Diorisis corpus. For each word, they randomly divided the source corpora into training (80 percent) and test sets (20 percent) and devised a way to automatically match lists of words associated with each sense by the model to sense labels assigned by a group of expert human annotators.

In experiments, the researchers report that GASC was able to provide “interpretable representations” of the evolution of word sense and that it achieves improved predictive performance compared to the state of the art. “To our knowledge, no previous work has systematically compared the estimates from a statistical model to manual semantic annotations of ancient texts,” the coauthors wrote. “This work can be seen as a step toward the development of richer evaluation schemes and models that can embed expert judgments.”

Let’s block ads! (Why?)

Big Data – VentureBeat

Ancient, Evolution, genre, Greek, Metadata, Text, track, Uses
  • Recent Posts

    • We were upgraded to the Unified Interface for Dynamics 365. Now What?
    • Recreating Art – the unexpected way
    • Upcoming Webinar: Using Dynamics 365 to Empower your Marketing and Sales Teams with Digital Automation
    • Center for Applied Data Ethics suggests treating AI like a bureaucracy
    • Improving Dynamics 365 Data Integrations with Alternate Keys
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited