• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

AI Weekly: Big Tech’s antitrust reckoning is a cautionary tale for the AI industry

August 3, 2020   Big Data
 AI Weekly: Big Tech’s antitrust reckoning is a cautionary tale for the AI industry

VB Transform

Watch every session from the AI event of the year

On-Demand

Watch Now

This week, as the heads of four of the largest and most powerful tech companies in the world were called before a virtual congressional antitrust hearing to answer inquiries into how they built and run their respective behemoths, you could see that the bloom on the rose of Big Tech has faded.

Facebook’s Mark Zuckerberg, once the rascally college dropout boy genius you loved to hate, still doesn’t seem to grasp the magnitude of the problem of globally destructive misinformation and hate speech on his platform. Tim Cook struggles to defend how Apple takes a 30% cut from some of its app store developers’ revenue — a policy he didn’t even establish that is a vestige of Apple’s mid-2000s vise grip on the mobile app market. The plucky young upstarts who founded Google are both middle-aged and have stepped down from executive roles, quietly fading away while Alphabet and Google CEO Sundar Pichai runs the show. And Jeff Bezos wears the untroubled visage of the world’s richest man.

Amazon, Apple, Facebook, and Google all created tech products and services that have undeniably changed the world, some in ways that are undeniably good. But as these tech titans moved fast and broke things, they also largely excused themselves from asking difficult ethical questions, from how they built their business empires to the impacts their products and services have on the people who use them.

As AI continues to lead the next wave of transformative technology, skating over these difficult questions is a mistake the world can’t afford to repeat. What’s more, AI technologies won’t actually work properly unless companies address the issues at their heart.

Smart and ruthless was the tradition of Big Tech, but AI requires people to be smart and wise. Those working in AI have to not only ensure the efficacy of what they make, but holistically understand the potential harms for people AI tech impacts. That’s a more mature and just way of building world-changing technologies, products, and services. Fortunately, many prominent voices in AI are leading the field down that path.

This week’s best example was the widespread reaction to a service called Genderify, which promised to use natural language processing (NLP) to help companies identify customers’ gender using only their name, username, or email address. The entire premise is absurd and problematic, and when AI folks got ahold of it to put it through its paces, they predictably found it to be terribly biased (which is to say, broken).

Genderify was such a bad joke that it almost seemed like some kind of performance art. In any case, it was laughed off the internet. Just a day or so after it was launched, the Genderify site, Twitter account, and LinkedIn page were gone.

It’s frustrating to many in the field that such ill-conceived and poorly executed AI offerings keep popping up. But the swift and wholesale deletion of Genderify illustrates the power and strength of this new generation of principled AI researchers and practitioners.

The burgeoning AI sector is already experiencing the kind of reckoning Big Tech is only facing after decades. Other recent examples include an outcry over a paper that promised to use AI to identify criminality from people’s faces (really just AI phrenology), which led to the paper being withdrawn from publication. Landmark studies on bias in facial recognition have led to bans and moratoriums on the technology’s use in several U.S. cities, as well as a raft of legislation to eliminate or combat its potential abuses. Fresh research is finding intractable problems with bias in well-established data sets like 80 Million Tiny Images and the legendary ImageNet — and leading to immediate (if overdue) change. And there’s more.

Although advocacy groups play a role in pushing for changes and posing tough questions, the authority for such inquiry and the research-based proof is coming from people inside the field of AI — ethicists, researchers looking for ways to improve AI techniques, and actual practitioners.

There is, of course, an immense amount of work to be done and many more battles ahead as AI fuels the next dominant set of technologies. Look no further than problematic AI in surveillance, military, the courts, employment, policing, and more.

But seeing tech giants like IBM, Microsoft, and Amazon pull back on massive investments in facial recognition is a sign of progress. It doesn’t actually matter whether their actions are narrative cover for a capitulation to other companies’ market dominance, a calculated move to avoid potential legislative punishment, or just a PR stunt. For whatever reason, these companies acknowledged the value of slowing down and reducing damage rather than continuing to “move fast and break things.”

Let’s block ads! (Why?)

Big Data – VentureBeat

antitrust, Cautionary, Industry, reckoning, Tale, Tech’s, Weekly
  • Recent Posts

    • Accelerate Your Data Strategies and Investments to Stay Competitive in the Banking Sector
    • SQL Server Security – Fixed server and database roles
    • Teradata Named a Leader in Cloud Data Warehouse Evaluation by Independent Research Firm
    • Derivative of a norm
    • TODAY’S OPEN THREAD
  • Categories

  • Archives

    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited