• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Alexa scientists teach AI language models new tongues with transfer learning

April 8, 2019   Big Data
 Alexa scientists teach AI language models new tongues with transfer learning

Adding support for a new language to a voice assistant like Alexa isn’t as easy as you might think, but researchers at Amazon believe they’ve developed a method that’ll expedite and simplify the process. In a newly published paper (“Cross-Lingual Transfer Learning for Spoken Language Understanding“) and accompanying blog post, they describe a technique that adapts a machine learning model trained in one tongue to another with minimal training data.

The method, which the paper’s coauthors are scheduled to present at the International Conference on Acoustics, Speech, and Signal Processing in Barcelona, Spain next month, relies on transfer learning (specifically cross-lingual transfer learning) to bootstrap new functions. They report that, in experiments, it reduced the data requirements for new languages by up to 50 percent.

“We believe that this is the first time that cross-lingual transfer learning has been used to translate a joint intent-slot classifier into a new language,” Alexa AI Natural Understanding scientists Quynh Do and Judith Gaspers said.

As they explain, spoken language understanding (SLU) systems typically involve two subtasks — intent classification and slot tagging — where an intent is the task a user wants performed and a slot implies the entities on which the intent acts. (For example, in the voice command “Alexa, play ‘High Hopes’ by Panic! at the Disco,” the intent is PlayMusic, and “High Hopes” and “Panic! at the Disco” fill the SongName and ArtistName slots.)

Training intent and slot classifiers jointly improves performance, Do and Gaspers note, so they and colleagues explored six different jointly trained AI systems. After comparing their performance with an open-sourced benchmark data set of English-language SLU examples, the team identified three that outperformed their predecessors on both classification tasks.

Next, they experimented with word embeddings (series of fixed-length coordinates corresponding to points in multidimensional space) and character embeddings (clusters reflecting the meanings of words and their component parts), which they fed into six different neural networks in total, including a type of recurrent network called a long-short-term-memory (LSTM) network that processes sequenced inputs in order and outputs factors in those that preceded it. And they used data from the source language (in this case English) to improve SLU performance in the target (German), chiefly by pretraining the SLU model and fine-tuning it on a target data set.

In a large-scale test, they created a corpus from one million utterances sampled from an English Alexa SLU system, plus random samples of 10,000 and 20,000 utterances from a German Alexa SLU system. The development set consisted of 2,000 utterances from the German system.

With bilingual input embeddings trained to group semantically similar words from both languages, the researchers found that a transferred model whose source data was the million English utterances and whose target data was the 10,000 German utterances classified intents more accurately than a monolingual model trained on 20,000 German utterances. With both the 10,000- and 20,000-utterance German data sets, the transferred model achieved a 4 percent improvement in slot classification score versus a monolingual model trained on only the German utterances.

“Although the highway LSTM model was the top-performing model on the English-language test set, that doesn’t guarantee that it will yield the best transfer learning results,” they wrote. “In ongoing work, we’re transferring the other models to the German-language context, too.”

Let’s block ads! (Why?)

Big Data – VentureBeat

Alexa, language, Learning, Models, scientists, Teach, tongues, Transfer
  • Recent Posts

    • solve for variable in iterator limit
    • THE UNIVERSE: A WONDROUS PLACE
    • 2020 ERP/CRM Software Blog Award Winners
    • Top 10 CRM Software Blog Posts in 2020
    • Database trends: Why you need a ledger database
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited