• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Big Data Disaster Recovery Preparation Tips

January 31, 2018   Big Data

Preparing to recover Big Data workloads after an unexpected disaster requires more than just having data backups on hand. This article explains how to build an effective Big Data disaster recovery strategy.

Disaster recovery is the process of restoring normal operations after an unexpected event destroys part or all of your IT infrastructure.

All organizations should have a disaster recovery plan in place. However, the importance of disaster recovery is even greater for companies that rely heavily on data to drive their business, and that need to restore data-based operations quickly in order to get back to business following a disaster.

5 Must-Haves for Big Data Disaster Recovery

An effective Big Data disaster recovery plan includes the following…

1. Off-Site Data Backups

Backing up your data to a remote location is the most obvious disaster recovery preparation step. Off-site backups ensure that data will remain unharmed in the event that a physical disaster, such as a fire or a major storm, destroys your production infrastructure.

Perhaps the most important item to keep in mind about off-site data backups is that they are not enough on their own to ensure reliable disaster recovery. See also: Data Backup vs. Disaster Recovery: Yes, There’s a Big Difference

usb 932180 960 720 600x Big Data Disaster Recovery Preparation Tips

2. On-Site Backups

Off-site data backups are the best way to ensure that data will remain available, no matter what type of disaster may strike.

In some cases, however, it may make sense also to keep on-site backups. The advantage of on-site data backups is that data can often be restored more quickly from on-site servers than it can from remote sites – provided, of course, that some of your on-site infrastructure survives the disaster.

3. Big Data Recovery Playbooks

When you’re dealing with an unexpected infrastructure failure, you need a plan in place for guiding all of your actions as you restore data. The last thing you should be doing is figuring things out as you go, or guessing what your next step should be.

This is why developing “playbooks” is so important. A playbook is a set of steps that you write out ahead of time – that is, before a disaster occurs – and follow when recovering from a disaster.

blog banner SoR 2018 1 Big Data Disaster Recovery Preparation Tips

Your playbooks should be written to be somewhat adaptable, of course, because it’s impossible to predict every challenge you’ll face during disaster recovery. But having playbooks in place will do much to lay the groundwork for quick and efficient disaster recovery.

4. Data Transformation Tools

Moving data from backup locations to production servers can be time-consuming when there is a lot of data involved. It is even more difficult if the data needs to undergo transformations – which is likely the case if, for example, your backup data is stored in one format but needs to be converted to a different format in production.

For this reason, it’s important to ensure that you’ll have good data transformation tools at your disposal during disaster recovery. This may require having backup instances of the tools available in case your production environments are destroyed.

5. Data Capture Continuity

A disaster may destroy your ability to continue capturing data, but it doesn’t stop the data from flowing. During disaster recovery, it’s important to ensure that you maintain continuous capture of data to the extent possible, even if your analytics operations are interrupted.

If possible, have backup storage locations that will become operable in the event that your main storage servers are disrupted. Ensure that your backup locations have enough capacity to handle the amount of new data that will be generated during the time it takes to restore operations – which could be hours, days or longer, depending on the type of disruption you suffer and the extent of your infrastructure.

Conclusion

Heeding the considerations discussed above will ensure not just that you have backup data available in the event that disaster strikes, but also that you can restore production data operations as quickly as possible. Backup data on its own is of little value if you can’t put it to use quickly in a broader Big Data disaster recovery strategy.

Download our 2018 State of Resilience Report to see how organizations are strategizing to sustain severe shocks, protect information, and enable the insight and intelligence required to stay competitive.

Let’s block ads! (Why?)

Syncsort + Trillium Software Blog

data, Disaster, preparation, Recovery, Tips
  • Recent Posts

    • PUNNIES
    • Cashierless tech could detect shoplifting, but bias concerns abound
    • Misunderstood Loyalty
    • Pearl with a girl earring
    • Dynamics 365 Monthly Update-January 2021
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited