• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Google releases a data set to spur development of multilingual AI models

April 13, 2020   Big Data

Google today released a natural language processing systems benchmark — XTREME — with nine tasks that require reasoning about semantics across 40 languages and 12 language families. Researchers at the tech giant assert it can evaluate whether AI models capture knowledge shared across languages, which can be useful for a growing number of natural language applications.

The goal is to spur on research in the AI multilingual learning domain, where the bulk of recent work has investigated whether the structure of data-sparse languages might be leveraged to train robust machine learning models. For instance, languages often have etymologically similar words — “desk” in English and “Tisch” in German come from the Latin discus — and mark semantic roles in similar ways, like the use of postpositions to denote spatial relations in Chinese and Turkish.

The languages in Xtreme, then, were selected to maximize diversity and for their coverage of existing tasks as well as the availability of training data. Among them are under-studied languages such as the Dravidian languages Tamil, which are spoken in southern India, Sri Lanka, and Singapore; Telugu and Malayalam, spoken mainly in southern India; and the Niger-Congo languages Swahili and Yoruba, spoken in Africa. As for Xtreme’s nine tasks, they cover a range of paradigms including sentence classification (i.e., assigning a sentence to one or more classes) and structured prediction (predicting objects like entities and parts of speech), in addition to things like sentence retrieval (matching a query against a set of records) and efficient question-answering.

 Google releases a data set to spur development of multilingual AI models

Above: Tasks supported in Google’s Xtreme benchmark.

Image Credit: Google

Models successfully tested on Xtreme must be pre-trained on multilingual text using objectives that encourage cross-lingual learning. Then, they must be fine-tuned on task-specific English data, since English is the most likely language where labelled data is available. Xtreme evaluates these models on zero-shot cross-lingual transfer performance — i.e., on other languages for which no task-specific data was seen. For tasks where labelled data is available in other languages, Xtreme also compares against fine-tuning on in-language data and provides a combined score by obtaining the zero-shot scores on all tasks.

Revealingly, in preliminary experiments on Xtreme, a team of Google researchers found that even state-of-the-art models like multilingual BERT, XLM, XLM-R, and M4 fell short of expectations. Multilingual BERT achieved a zero-shot accuracy of 86.9 (out of 100) on Spanish compared with 49.2 on Japanese and generally had difficulty transferring to non-Latin scripts, while all models struggled to predict entities that weren’t seen in the English training data for distant languages. (Accuracies on Indonesian and Swahili were 58.0 and 66.6, respectively, compared to 82.3 and 80.1 for Portuguese and French.

 Google releases a data set to spur development of multilingual AI models

“We find that while models achieve close to human performance on most existing tasks in English, performance is significantly lower for many of the other languages,” wrote Google Research senior software engineer Melvin Johnson and DeepMind scientist Sebastian Ruder in a blog post. “Overall, a large gap between performance in English and other languages remains across all models and settings, which indicates that there is much potential for research on cross-lingual transfer.”

The code and data for the Xtreme benchmark are available on GitHub, along with examples for running various baselines. A website and instructions for submitting results to a leaderboard are forthcoming.

Let’s block ads! (Why?)

Big Data – VentureBeat

data, Development, Google, Models, multilingual, Releases, spur
  • Recent Posts

    • NOW, THIS IS WHAT I CALL AVANTE-GARDE!
    • Why the open banking movement is gaining momentum (VB Live)
    • OUR MAGNIFICENT UNIVERSE
    • What to Avoid When Creating an Intranet
    • Is Your Business Ready for the New Generation of Analytics?
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited