• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Google’s Objectron uses AI to track 3D objects in 2D video

March 12, 2020   Big Data

Coinciding with the kickoff of the 2020 TensorFlow Developer Summit, Google today published a pipeline — Objectron — that spots objects in 2D images and estimates their poses and sizes through an AI model. The company says it has implications for robotics, self-driving vehicles, image retrieval, and augmented reality — for instance, it could help a factory floor robot avoid obstacles in real time.

Tracking 3D objects is a tricky prospect, particularly when dealing with limited compute resources (like a smartphone system-on-chip). And it becomes tougher when the only imagery (usually video) available is 2D due to a lack of data and a diversity of appearances and shapes of objects.

The Google team behind Objectron, then, developed a toolset that allowed annotators to label 3D bounding boxes (i.e., rectangular borders) for objects using a split-screen view to display 2D video frames. 3D bounding boxes were overlaid atop it alongside point clouds, camera positions, and detected planes. Annotators drew 3D bounding boxes in the 3D view and verified their locations by reviewing the projections in 2D video frames, and for static objects, they only had to annotate the target object in a single frame. The tool propagated the object’s location to all frames using ground truth camera pose information from AR session data.

 Google’s Objectron uses AI to track 3D objects in 2D video

To supplement the real-world data in order to boost the accuracy of the AI model’s predictions, the team developed an engine that placed virtual objects into scenes containing AR session data. This allowed for the use of camera poses, detected planar surfaces, and estimated lighting to generate physically probable placements with lighting that matches the scene, which resulted in high-quality synthetic data with rendered objects that respected the scene geometry and fit seamlessly into real backgrounds. In validation tests, accuracy increased by about 10% with the synthetic data.

 Google’s Objectron uses AI to track 3D objects in 2D video

Better still, the team says the current version of the Objectron model is lightweight enough to run in real time on flagship mobile devices. With the Adreno 650 mobile graphics chip found in phones like the LG V60 ThinQ, Samsung Galaxy S20+, and Sony Xperia 1 II, it’s able to process around 26 frames per second.

 Google’s Objectron uses AI to track 3D objects in 2D video

 Google’s Objectron uses AI to track 3D objects in 2D video Google’s Objectron uses AI to track 3D objects in 2D video

The Objectron is available in MediaPipe, a framework for building cross-platform AI pipelines consisting of fast inference and media processing (like video decoding). Models trained to recognize shoes and chairs are available, as well as an end-to-end demo app.

The team says that in the future, it plans to share additional solutions with the research and development community to stimulate new use cases, applications, and research efforts. Additionally, it intends to scale the Objectron model to more categories of objects and further improve its on-device performance.

Let’s block ads! (Why?)

Big Data – VentureBeat

Google's, Objectron, Objects, track, Uses, VIDEO
  • Recent Posts

    • The Neanderthals
    • What the swarm of new Azure announcements mean
    • Importance of Integrating SharePoint and Dynamics 365 in an SMB
    • InfoWars Surrenders
    • Invest Your Time in the Right Skills to Become a Data Scientist in 2021
  • Categories

  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited