• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Hive taps a workforce of 700,000 people to label data and train AI models

November 17, 2018   Big Data

Datasets are the lifeblood of artificial intelligence (AI) — they’re what make models tick, so to speak. But data without corresponding annotations is, depending on the type of algorithm at play (i.e., supervised versus unsupervised), more or less useless. That’s why sample-labeling startups like Scale have raised tens of millions of dollars and attracted clients like Uber and General Motors. And it’s why Kevin Guo and Dmitriy Karpman cofounded Hive, a startup that uses annotated data supplied by hundreds of thousands of volunteers to train domain-specific AI models.

Hive, which employs nearly 100 people, launched its flagship trio of products — Hive Data, Hive Predict, and Hive Enterprise — shortly before raising over $ 30 million in venture capital from PayPal founder Peter Thiel’s Founders Fund and others.

“We built [Hive] because we felt that while there’s a lot of excitement around AI and deep learning, we didn’t see many practical applications being built,” Guo told VentureBeat in a phone interview. “There’s a lot of hype, but didn’t seem obvious what problems they’re really going to solve. Most of these things were demos that were somewhat working, but weren’t really enterprise-grade.”

Toward that end, Hive recruits the bulk of its human data labelers through Hive Work, a smartphone app and website that instructs them to complete tasks like classifying images and transcribing audio. In exchange, Hive doles out a small reward — tens of thousands of dollars a week. (Guo says it can use “surge pricing” to ensure faster turnaround times when necessary, like when a Hive customer has a specific project.)

The strategy’s been a success. Hive counts almost 700,000 users in over 30 countries among its contributor community, who help to process roughly ten million tags a day with 99 percent accuracy. (That accuracy is attributable in part to a weed-out system that slips in “known” tasks every once in a while, ensuring users don’t game the system.) Clients tap the workforce through Hive Data, which provides data-labeling services tailored to a number of verticals.

“Getting training data to build these models is actually really, really important. It’s almost ironic in a sense that the only way to automate is by enlisting an enormous amount of human labor,” Guo said. “You can have the best framework there is, but without good training data, you’re not gonna be able to have a good output. I liken it to a human mind: You can have the smartest brain, but if you don’t teach this brain the difference between cats and dogs and show it good examples, it’ll never recognize the difference between cats and dogs.”

Hive Work’s output also feeds Hive Predict, custom-designed computer vision models for enterprises that help automate business processes, and Hive Enterprise, which targets domains like auto, retail, security, and media with customized deep learning models built from scratch with proprietary data. Using a backend based on Google’s open source TensorFlow framework, Hive develops AI systems via an API or the cloud, or engineers an on-premises solution in partnership with integration partners.

So far on its in-house servers and networking infrastructure, Hive has created machine learning models that recognize activity, predict age and gender, classify cars, determine the distance between a camera sensor and a subject of interest, and even detect things like explosions, gunshots, fights, and commercials in television feeds. Guo declined to name any of Hive’s customers, but said that each is making tens of millions of API requests a month.

One of Hive’s models — Logo Model API — detects logos, of course, but also the products or ads on which they’re displayed and the duration they’re visible. And it has a 99 percent recall and 98 precision, Hive claims, compared to Google Vision Cloud’s 5 percent recall and 66 percent precision.

Hive’s adding 100 logos a week, with the goal of reaching 10,000 by Q4 2018.

“Our standard for quality is just much higher than everyone else,” Guo said. “I didn’t want [Hive] to be another really overhyped AI company that couldn’t actually build technology, I don’t think that’s good for the space in general.”

Let’s block ads! (Why?)

Big Data – VentureBeat

700000, data, Hive, Label, Models, People, taps, train, Workforce
  • Recent Posts

    • Database version control: Getting started with Flyway
    • Support CRM with New Dynamics 365 Field Service Mobile App
    • 6 Strategies for Achieving Your Business Goals in the New Year
    • Researchers propose using the game Overcooked to benchmark collaborative AI systems
    • Oracle Launches Version 21c
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited