• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

How one company learned to reinvent itself daily in the AI age

October 12, 2017   Big Data
 How one company learned to reinvent itself daily in the AI age

Online life insurance agency Haven Life announced an upgrade to its service earlier this week that could let you buy a life insurance policy in just a few minutes after answering about 30 questions — possibly with no medical checkup. That speed of underwriting is made possible by artificial intelligence the two-year-old company has built into its offering.

The company is one example of a new breed of fast-moving businesses built atop AI. It’s difficult to get a good idea of the types of machine learning these companies are building into their products, as they’re giving very little away at this stage. But they’re constantly iterating: testing out new machine-run decision-making processes and then migrating the next part of their business over to those systems once they prove secure.

Haven Life’s upgrade this week is a good example of that kind of iteration. A young, healthy applicant can now get a final decision within about five minutes, no medical or labs required, and buy a policy on the spot. But the company’s underwriting process still isn’t fully automated for all applicants. More complicated cases still need to be looked at by a human underwriter behind the scenes and may require a medical exam. “We’re continuing to lower that percentage [of humans in the loop]” by reassessing the data and rules the service’s AI relies on, CTO Todd Rodgers told VentureBeat.

While fully owned by traditonal life insurance company MassMutual, Haven Life is very much living on the frontier of machine learning. It’s a life of constant rethinking and adaptation, and it requires a new way of conducting business, where the speed of AI advancements dictate the speed of business decisions. “You have to have an appetite for iteration” to succeed with this type of business, Rodgers said. “Going into development with the understanding you’ll never be done is critical.”

And it takes a certain kind of team. “To pull this off, you need people with deep, deep subject matter expertise, you need developers who are interested in the business problem they’re solving, and you need analysts who can intermediate between the two, who can explain an objective in a way that developers know how to codify it,” said Rodgers. He said Haven Life has been lucky to have subject matter experts who are close enough to the data and code that they don’t need the intermediaries. “You also need to be colocated,” Rodgers said, “since you’ll be working together day in day out” on a project that is never finished.

When the company first launched in 2015, it started to pull in third-party data, such as prescription histories, motor vehicle records, and information from the Medical Information Bureau, to assess appropriate life insurance quotes. That didn’t make the company unique. This is data that’s commonly used across the industry, Rodgers said. Where Haven Life innovated was in gradually restructuring that data so that it could be sorted in a highly structured way, allowing the company to run increasingly sophisticated rules and algorithms against it. The more patterns the company has been able to surface in the data, the more rules it has been able to feed to its AI.

With the new update the company announced this week, it is finally cutting over to using the AI output as the primary determining factor for the policy rate. “Before now we’ve always run the algorithm in parallel with a human looking at this too,” said Rodgers. He underscored, though, that human underwriters are still involved in some percentage of cases.

There are seven prescription drugs the company has been able to develop advanced rules for to date. “Each drug takes a lot of analysis. We’d like to expand that out to a larger number of drugs, since each one we add means one more case that we can immediately underwrite [without human involvement],” said Rodgers.

“We’ve gotten to the point where we can ask follow-up questions while the client is still online in the application process based on prescription drug data we’re pulling in in real time,” said Rodgers. “As clients are answering questions, we realize what new information we need and we refine our questions accordingly.” The goal is to optimize on the amount of information the company can glean with just 30 questions.

Haven Life has built its AI in-house over a two-year process of looking at data, consulting with MassMutual’s doctors and its own team of actuaries, and building out rules. It also had the benefit of MassMutual’s data science team and the parent company’s historical data — some 1 million policies going back about 15 years.

When asked why the company hasn’t leveraged any third-party AI tools, Rodgers said, “There are tools you can use. What we’re doing, though, is pretty innovative, so there’s nothing on the market that does exactly what we’re doing. We’re very focused on the ability to be agile and flexible, and a lot of that ability is due to the fact that we’ve built from scratch.”

The reasons ready-built products are something not a good fit? “If you work with a third-party product, I think you’d probably be guided by that product’s view of the world, and it could narrow down your focus,” he said.

Rodgers offered the following advice to other companies deploying advanced machine learning: “If there’s a tool out there that works for you, great. But if not, don’t contort a tool that wasn’t meant for you. And don’t be afraid to build from scratch.”

Haven Life’s dev team, by the way, makes up about 60 of the company’s 110 employees.

We’ve asked Todd Rodgers to facilitate a panel at our VBSummit later this month to dig into the technical challenges of rolling out AI.

Let’s block ads! (Why?)

Big Data – VentureBeat

Company, DAILY, itself, Learned, reInvent
  • Recent Posts

    • ANOTHER SIMPLE EXAMPLE OF FASCIST NAZI LEFTISTS AT WORK
    • Nvidia and Harvard develop AI tool that speeds up genome analysis
    • Export with large E instead of small e
    • You’ll be back
    • Building AI for the Global South
  • Categories

  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited