• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

How the pandemic challenges companies that use predictive models

March 10, 2021   Big Data
 How the pandemic challenges companies that use predictive models

The power of audio

From podcasts to Clubhouse, branded audio is more important than ever. Learn how brands are increasing customer loyalty and personalization with these best practices.

Register Now


Join Transform 2021 for the most important themes in enterprise AI & Data. Learn more.


For enterprises using predictive models to forecast consumer behavior, data drift was a major challenge in 2020 due to never-before-seen circumstances related to the pandemic. Organizations were forced to constantly retrain and update their machine learning models, and 12 months later, many are still wrestling with the challenge.

In an interview with VentureBeat, Dan Simion, VP of AI & Analytics for Capgemini North America, said that while companies are in a better position than they were three months into the pandemic, they’re in a different position. While they’re acclimating to the data coming in within the context of this new environment, they can’t draw patterns from the past 12 months of data because behaviors continue to change.

“In the first three months, everyone was more or less trying to make sense of what could be done to use the new data and start building more accurate machine learning models,” Simion said. “Today, the question is: How quickly can we adapt and retrain machine learning models?”

Simion pointed out that models need to be nimble enough to increase accuracy by leveraging new data on the changing behaviors as it comes in. It’s also critical to establish a way to scale this process, he said, because changing machine learning models and adapting to continuously shifting data takes a coordinated effort.

As an example, Simion talked about a multibillion-dollar global consumer packaged goods company in the frozen food sector. Early on in the pandemic, the company, which is a Capgemini customer, had to adjust to trends and behaviors that varied widely depending on specific regions and states. In the first three to four months of the pandemic, when most regions had restrictions in place, frozen food sales went up significantly as customers chose to eat at home. But while some states have since loosened their quarantine rules and the number of frozen food sales has decreased overall, other states have opted for a slower reopening, leading to shifting trends that make it difficult to predict where frozen food sales will ultimately settle.

In another example, Simion says that a Capgemini client in the industrial components space is struggling to anticipate disruptions in the global supply chain. Because of international restrictions and limits, there aren’t many ways to deliver materials and products across countries. The company had emergency reserve supplies stockpiled in warehouses at the three-to-four-month mark of the pandemic, but with that emergency supply gone, limited transportation and supply have made it difficult to build accurate forecasts amid so many variables and constraints.

Simion says the challenges are particularly acute in commerce. One Fortune 500 retailer retaining Capgemini’s services can no longer track and predict certain buying patterns with the precision it did before the pandemic. In a normal year, during Christmas or approaching Back to School season, shoppers would make purchases, and orders of particular items would increase predictably. But that has changed as varying pandemic constraints, including hybrid learning environments and smaller holiday gatherings, impact people and their spending.

“The supply chain was built in a way that would fulfill steady demand. Planning and forecasting based on that prior data was easy and highly accurate,” Simion said. “Now, all of that is changing. [E]ven after 12 months of living in this pandemic-impacted world, we cannot grasp what an accurate predictive model will be.”

A report recently published in Harvard Business Review suggests several remedies for unstable predictive models. To fix these models, companies might look to analogies like past economic shocks for an idea of the future during and after the pandemic. They might also embrace ensemble modeling, which combines predictions from different models to suggest a reasonable range. And they could include local knowledge, as well as aggregated knowledge from a panel of experts on the pandemic and its effects.

“The question is: How quickly can we adapt and retrain ML models? Not only do the models need to be rebuilt or redesigned based on new data, but they also need the right processes to be put into production at a pace that keeps up,” Simion added. “Until there is some sort of stability, it will continue to be difficult for organizations to identify consistent trends.”

VentureBeat

VentureBeat’s mission is to be a digital town square for technical decision-makers to gain knowledge about transformative technology and transact.

Our site delivers essential information on data technologies and strategies to guide you as you lead your organizations. We invite you to become a member of our community, to access:

  • up-to-date information on the subjects of interest to you
  • our newsletters
  • gated thought-leader content and discounted access to our prized events, such as Transform 2021: Learn More
  • networking features, and more

Become a member

Let’s block ads! (Why?)

Big Data – VentureBeat

Challenges, Companies, Models, pandemic, predictive
  • Recent Posts

    • Accelerate Your Data Strategies and Investments to Stay Competitive in the Banking Sector
    • SQL Server Security – Fixed server and database roles
    • Teradata Named a Leader in Cloud Data Warehouse Evaluation by Independent Research Firm
    • Derivative of a norm
    • TODAY’S OPEN THREAD
  • Categories

  • Archives

    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited