• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

IBM’s StarNet brings explainable AI to image classification

March 19, 2020   Big Data

In a paper published on the preprint server Arxiv.org, researchers at IBM propose StarNet, an end-to-end trainable image classifier that’s able to localize what it believes to be the key regions supporting its predictions. Besides addressing the task of visual classification, StarNet supports the task of weakly-supervised few-shot object detection, such that only a small amount of noisy data is required to achieve reasonable accuracy with it.

StarNet could increase transparency in and reduce the amount of training data needed for new visual domains, like self-driving cars and autonomous industrial robots. By extension, it could cut down on deployment time for AI projects involving classifiers, which surveys show ranges between 8 to 90 days.

StarNet consists of a few-shot classifier module attached to an extractor, both of which are trained in a meta-learning fashion where episodes are randomly sampled from classes. Each episode comprises support samples and random query samples for a given base class of image, like “turtle,” “parrot,” “chicken,” “dog.”

 IBM’s StarNet brings explainable AI to image classification

StarNet tries to geometrically match every pair of support and query images, matching regions of arbitrary shape between the two images up to the local deformations (accommodating for changes in shape). Training drives the matched regions to correspond to the locations of the class instances present on image pairs that share the same class label, localizing the instances. As they’re localized, StarNet highlights the common image regions, giving insight into how it made its predictions.

 IBM’s StarNet brings explainable AI to image classification

In experiments, the researchers used only the class labels for training, validation, and all of the support images, sourcing from data sets including miniImageNet dataset, CIFAR-FS, and FC100, all of which have 100 randomly chosen classes; CUB, which has 11,788 images of birds of 200 species; and ImageNetLOC-FS, which comprises 331 animal categories. They used 2,000 episodes for validation and 1,000 for testing on a single Nvidia K40 graphics card, resulting in running times from 1.15 seconds per batch to 2.2 seconds per batch on average.

On few-shot classification tasks, StarNet managed to perform up to 5% better than the state-of-the-art baselines. And with respect to weakly-supervised few-shot object detection, the model obtained results “higher by a large margin” than results obtained by all compared baselines. The team attributes this strong performance to StarNet’s knack for classifying objects through localization.

“Future work directions include extending StarNet towards efficient end-to-end differentiable multi-scale processing for better handling very small and very large objects; iterative refinement utilizing StarNet’s locations predictions made during training; and applying StarNet for other applications requiring accurate localization using only a few examples, such as visual tracking.”

t’s often assumed that as the complexity of an AI system increases, it becomes invariably less interpretable. But researchers have begun to challenge that notion with libraries like Facebook’s Captum, which explains decisions made by neural networks with the deep learning framework PyTorch, as well as IBM’s AI Explainability 360 toolkit and Microsoft’s InterpretML. For its part, Google recently detailed a system that explains how image classifiers make predictions, and OpenAI detailed a technique for visualizing AI decision-making.

Let’s block ads! (Why?)

Big Data – VentureBeat

Brings, classification, Explainable, IBM’s, Image, StarNet
  • Recent Posts

    • WHEN IDEOLOGY TRUMPS TRUTH
    • New Customer Experience Needs and Commerce Trends for 2021
    • A data transformation problem in SQL and Scala: Dovetailing declarative solutions
    • George Wallace Joins Laverne Cox For Comedy Titled ‘Clean Slate’
    • How Microsoft Azure DevOps and Dynamics 365 CRM Work Together to Improve Service Responsiveness
  • Categories

  • Archives

    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited