• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

IonQ CEO Peter Chapman on how quantum computing will change the future of AI

May 10, 2020   Big Data
 IonQ CEO Peter Chapman on how quantum computing will change the future of AI

Businesses eager to embrace cutting-edge technology are exploring quantum computing, which depends on qubits to perform computations that would be much more difficult, or simply not feasible, on classical computers. The ultimate goals are quantum advantage, the inflection point when quantum computers begin to solve useful problems, and quantum supremacy, when a quantum computer can solve a problem that classical computers practically cannot. While those are a long way off (if they can even be achieved), the potential is massive. Applications include everything from cryptography and optimization to machine learning and materials science.

As quantum computing startup IonQ has described it, quantum computing is a marathon, not a sprint. We had the pleasure of interviewing IonQ CEO Peter Chapman last month to discuss a variety of topics. Among other questions, we asked Chapman about quantum computing’s future impact on AI and ML.

Strong AI

The conversation quickly turned to Strong AI, or Artificial General Intelligence (AGI), which does not yet exist. Strong AI is the idea that a machine could one day understand or learn any intellectual task that a human being can.

“AI in the Strong AI sense, that I have more of an opinion just because I have more experience in that personally,” Chapman told VentureBeat. “And there was a really interesting paper that just recently came out talking about how to use a quantum computer to infer the meaning of words in NLP. And I do think that those kinds of things for Strong AI look quite promising. It’s actually one of the reasons I joined IonQ. It’s because I think that does have some sort of application.”

VB Transform 2020 Online – July 15-17: Join leading AI executives at the AI event of the year. Register today and save 30% off digital access passes.

In a follow-up email, Chapman expanded on his thoughts. “For decades it was believed that the brain’s computational capacity lay in the neuron as a minimal unit,” he wrote. “Early efforts by many tried to find a solution using artificial neurons linked together in artificial neural networks with very limited success. This approach was fueled by the thought that the brain is an electrical computer, similar to a classical computer.”

“However, since then, I believe we now know, the brain is not an electrical computer, but an electrochemical one,” he added. “Sadly, today’s computers do not have the processing power to be able to simulate the chemical interactions across discrete parts of the neuron, such as the dendrites, the axon, and the synapse. And even with Moore’s law, they won’t next year or even after a million years.”

Chapman then quoted Richard Feynman, who famously said “Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”

“Similarly, it’s likely Strong AI isn’t classical, it’s quantum mechanical as well,” Chapman said.

Machine learning

One of IonQ’s competitors, D-Wave, argues that quantum computing and machine learning are “extremely well matched.” Chapman is still on the fence.

“I haven’t spent enough time to really understand it,” he admitted. “There clearly is a lot of people who think that ML and quantum have an overlap. Certainly, if you think of 85% of all ML produces a decision tree. And the depth of that decision tree could easily be optimized with a quantum computer. Clearly there’s lots of people that think that generation of the decision tree could be optimized with a quantum computer. Honestly, I don’t know if that’s the case or not. I think it’s still a little early for machine learning, but there clearly is so many people that are working on it. It’s hard to imagine it doesn’t have application.”

Again, in an email later, Chapman followed up. “ML has intimate ties to optimization: many learning problems are formulated as minimization of some loss function on a training set of examples. Generally, Universal Quantum Computers excel at these kinds of problems.”

Chapman listed three improvements in ML that quantum computing will likely allow:

  • The level of optimization achieved will be much higher with a QC as compared to today’s classical computers.
  • The training time might be substantially reduced because a QC can work on the problem in parallel, where classical computers perform the same calculation serially.
  • The amount of permutations that can be considered will likely be much larger because of the speed improvements that QCs bring.

AI is not a focus for IonQ

Strong AI or ML, IonQ isn’t particularly interested either. The company leaves that part to its customers and future partners.

“There’s so much to be to be done in a quantum,” Champan said. “From education at one end all the way to the quantum computer itself. I think some of our competitors have taken on lots of the entire problem set. We at IonQ are just focused on producing the world’s best quantum computer for them. We think that’s a large enough task for a little company like us to handle.”

“So, for the moment we’re kind of happy to let everyone else work on different problems,” he added. “We just think, producing the world’s best quantum computer is a large enough task. We just don’t have extra bandwidth or resources to put into working on machine learning algorithms. And luckily, there’s lots of other companies that think that there’s applications there. We’ll partner with them in the sense that we’ll provide the hardware that their algorithms will run on. But we’re not in the ML business per se.”

Let’s block ads! (Why?)

Big Data – VentureBeat

Change, Chapman, Computing, future, IonQ, Peter, quantum
  • Recent Posts

    • Kevin Hart Joins John Hamburg For New Netflix Comedy Film Titled ‘Me Time’
    • Who is Monitoring your Microsoft Dynamics 365 Apps?
    • how to draw a circle using disks, the radii of the disks are 1, while the radius of the circle is √2 + √6
    • Tips on using Advanced Find in Microsoft Dynamics 365
    • You don’t tell me where to sit.
  • Categories

  • Archives

    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited