• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

MIT CSAIL teaches autonomous cars to navigate occluded intersections safely

November 5, 2019   Big Data

Truly autonomous vehicles — those without human safety drivers at the wheel — must be capable of determining when it’s safe to merge into traffic. Intersections with obstructed views make this somewhat challenging, but researchers at Toyota and MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) say they’ve developed an AI model that can estimate collision risk highly accurately.

The key turned out to be uncertainty. The model — which the team designed specifically for junctions that lack a stoplight, forcing cars to yield for traffic — weighs several factors in tabulating risk, including visual occlusions, sensor noise and errors, the speed of other cars, and the attentiveness of other drivers. It also considers how long it’d take the car to steer through the intersection, along with all safe stopping spots for crossing traffic.

The model splits the road into segments, enabling it to determine if any one section is occupied by another car. The moment a passing car travels into a segment, its speed informs a prediction of the car’s progression through subsequent segments. Simultaneously, the model considers the road segments the car passed through before the intersection, the rationale being that cars occupying a high number likely spotted the autonomous car.

 MIT CSAIL teaches autonomous cars to navigate occluded intersections safely

The aforementioned risk estimate is updated continuously. In the presence of multiple occlusions, the model directs the car to nudge forward in order to reduce uncertainty. And when the risk bottoms out, the model has it drive through the intersection without stopping so as to avoid increasing the risk of collision by lingering.

The team managed to run the model on remote-control cars in real time, suggesting it’s efficient and fast enough to deploy into full-scale autonomous test cars in the near future. They concede that it needs more rigorous testing, but they believe it could serve as a supplemental risk metric that an autonomous vehicle system can use to better reason about driving through intersections safely.

“When you approach an intersection there is potential danger for collision. Cameras and other sensors require line of sight. If there are occlusions, they don’t have enough visibility to assess whether it’s likely that something is coming,” said director of CSAIL Daniela Rus in a statement. “In this work, we use a predictive-control model that’s more robust to uncertainty, to help vehicles safely navigate these challenging road situations.”

As a next step, the researchers aim to incorporate risk factors such as the presence of pedestrians in and around the road junction in the model.

Let’s block ads! (Why?)

Big Data – VentureBeat

Autonomous, cars, CSAIL, intersections, Navigate, occluded, Safely, Teaches
  • Recent Posts

    • Experimenting to Win with Data
    • twice-impeached POTUS* boasts: “I may even decide to beat [Democrats] for a third time”
    • Understanding Key Facets of Your Master Data; Facet #2: Relationships
    • Quality Match raises $6 million to build better AI datasets
    • Teradata Joins Open Manufacturing Platform
  • Categories

  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited