• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

NIST study finds that masks defeat most facial recognition algorithms

July 28, 2020   Big Data

VB Transform

Watch every session from the AI event of the year

On-Demand

Watch Now

In a report published today by the National Institutes of Science and Technology (NIST), a physical sciences laboratory and non-regulatory agency of the U.S. Department of Commerce, researchers attempted to evaluate the performance of facial recognition algorithms on faces partially covered by protective masks. They report that the 89 commercial facial recognition algorithms from Panasonic, Canon, Tencent, and others they tested had error rates between 5% and 50% in matching digitally applied masks with photos of the same person without a mask.

“With the arrival of the pandemic, we need to understand how face recognition technology deals with masked faces,” Mei Ngan, a NIST computer scientist and a coauthor of the report, said in a statement. “We have begun by focusing on how an algorithm developed before the pandemic might be affected by subjects wearing face masks. Later this summer, we plan to test the accuracy of algorithms that were intentionally developed with masked faces in mind.”

The study — part of a series from NIST’s Face Recognition Vendor Test (FRVT) program conducted in collaboration with the Department of Homeland Security’s Science and Technology Directorate, the Office of Biometric Identity Management, and Customs and Border Protection — explored how well each of the algorithms was able to perform “one-to-one” matching, where a photo is compared with a different photo of the same person. (NIST notes this sort of technique is often used in smartphone unlocking and passport identity verification systems.) The team applied the algorithms to a set of about 6 million photos used in previous FRVT studies, but they didn’t test “one-to-many” matching, which is used to determine whether a person in a photo matches any in a database of known images.

Because real-world masks differ, the researchers came up with nine mask variants to test, which included differences in shape, color, and nose coverage. The digital masks were black or a light blue approximately the same color as a blue surgical mask, while the shapes ranged from round masks covering the nose and mouth to a type as wide as the wearer’s face. The wider masks had high, medium, and low variants that covered the nose to varying degrees.

 NIST study finds that masks defeat most facial recognition algorithms

According to the researchers, algorithm accuracy with masked faces declined “substantially” across the board. Using unmasked images, the most accurate algorithms failed to authenticate a person about 0.3% of the time, and masked images raised even these top algorithms’ failure rate to about 5%, while many “otherwise competent” algorithms failed between 20% and 50% of the time.

In addition, masked images more frequently caused algorithms to be unable to process a face, meaning they couldn’t extract features well enough to make an effective comparison. The more of the nose a mask covered, the lower the algorithm’s accuracy; accuracy degraded with greater nose coverage. Error rates were generally lower with round masks and black masks as opposed to surgical blue ones. And while false negatives increased, false positives remained stable or modestly declined. (A false negative indicates an algorithm failed to match two photos of the same person, while a false positive indicates it incorrectly identified a match between photos of two different people.)

“With respect to accuracy with face masks, we expect the technology to continue to improve,” continued Ngan. “But the data we’ve taken so far underscores one of the ideas common to previous FRVT tests: Individual algorithms perform differently. Users should get to know the algorithm they are using thoroughly and test its performance in their own work environment.”

The results of the study align with a VentureBeat article earlier this year that found that facial recognition algorithms used by Google and Apple struggled to recognize mask-wearing users. But crucially, NIST didn’t take into account systems designed specifically to identify mask wearers, like those from Chinese company Hanwang and researchers affiliated with Wuhan University. In an op-ed in April, Northeastern University professor Woodrow Hartzog characterized masks as a temporary technological speed bump that won’t stand in the way of increased facial recognition use in the age of COVID-19. Already, companies like Clearview AI are attempting to sell facial recognition to state agencies for the purpose of tracking people infected with COVID-19.

Perhaps in recognition of this, this summer, NIST plans to test algorithms created with face masks in mind and conduct tests with one-to-many searches and other variations.

Let’s block ads! (Why?)

Big Data – VentureBeat

algorithms, defeat, facial, Finds, masks, Most, NIST, recognition, Study
  • Recent Posts

    • Database version control: Getting started with Flyway
    • Support CRM with New Dynamics 365 Field Service Mobile App
    • 6 Strategies for Achieving Your Business Goals in the New Year
    • Researchers propose using the game Overcooked to benchmark collaborative AI systems
    • Oracle Launches Version 21c
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited