• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Nvidia’s plan to turn data from 500 million cameras into AI gold

October 17, 2017   Big Data
 Nvidia’s plan to turn data from 500 million cameras into AI gold

Video is the world’s largest generator of data, created every day by over 500 million cameras worldwide. That number is slated to double by 2020. The potential there, if we could actually analyze the data, is off the charts. It’s data from government property and public transit, commercial buildings, roadways, traffic stops, retail locations, and more.

The result would be what NVIDIA calls AI Cities, a thinking robot, with billions of eyes trained on residents and programmed to help keep people safe.

“Historically, video data has always been used in a forensic, after-the-fact kind of use case,” says Naphade Milind Naphade, CTO of AI City at NVIDIA and one of the speakers at VB Summit: Riding the AI Wave on October 23 & 24 in Berkeley.” But these omnipresent sensors can impact everything from public safety, traffic, and parking management to law enforcement and city services.”

The challenge up to now is not just that it’s difficult to move this data, store it, and analyze with any kind of timeliness. Video is also its own special kind of creature, in the world of sensors, not like a temperature sensor or a pressure sensor that gives you just one particular indicator. Video requires interpretation via powerful deep-learned algorithms, and the kind of computational power that would allow this algorithm to operate in the kind of time that it needs for that insight to matter is massive.

“The quintessential breakthrough is that we finally have access from the edge to the cloud,” Naphade says.

Unveiled in May, Metropolis is an edge-to-cloud video platform that includes tools, technologies, and support to build smarter, faster AI-powered applications. It’s designed to put AI behind every camera, on-premises video recorder and server, and in the cloud. As neural networks are trained on increasingly complex recognition tasks, their accuracy and scalability grow to tremendous heights — and then they’re set loose to save both lives and billions of dollars.

On a large transportation authority network, sparsely populated subway or train stations can be monitored 24/7 to summon aid for riders who encounter trouble or danger at a station — the commuter who trips at the top of the escalator, the kid who gets too close to the edge of the platform. Train tracks are subject to wear and tear over millions of miles of back and forth travel; there are 650,000 bridges in the United States, and every damage inspection causes traffic to back up for miles. Inspections by video-enabled drones would eliminate the kind of disruption that closes down the Golden Gate Bridge.

More than 50 NVIDIA AI city partner companies are already providing products and applications that use deep learning on GPUs, among them industry leaders like Avigilon, Dahua, Hanwha Techwin, Hikvision, Alibaba, Huawei, and Milestone.

With Metropolis, Hikvision has achieved recall rates of more than 90 percent for its identification and matching technology, which makes it easier to find lost people in crowded places. It works with a camera and network video recorder, plus compute-intensive system at the edge, cloud servers, and an AI supercomputer for training.

Alibaba Cloud’s City Brain offers real-time traffic management and prediction, city services and smarter drainage systems. In Hangzhou’s pilot district City Brain helped to ease traffic congestion by 11 percent.

Huawei is combating traffic congestion using intelligent video analytics, combined all the data necessary, including vehicle information, speed, direction, and more, to provide real-time traffic analysis and improve traffic flow. They have seen speed congestion rates drop by 15 percent.

And development is speeding up with their partner program, which gathers together a dozen software partners to offer a curated list of applications that make it easy for systems integrators and hardware vendors to build new products.

Among them is a facial recognition solution from SenseTime, designed for public safety, retail, and access control. The company is already working with Chinese industry leaders, including China Mobile Communications Corp, China UnionPay and Sina Weibo Corp, to leverage its technology for security and surveillance, finance, education and robotics.

Pilot projects are running in the San Francisco and San Jose area, where the NVIDIA Metropolis platform is being leveraged to make parking an easier, frictionless experience.

“The proof is in the pudding,” Naphade says. “Some of our partners are now being asked by cities in the United Arab Emirates for this technology; we’re seeing a proliferation of the cities that are now wanting to have this technology at their fingertips.”

Today, you can’t live without internet, Naphade says. Years ago, you couldn’t live without electricity. And in the next few years, we’ll see AI becoming that pervasive in our lives,

“We’re going to be permanently, irreversibly changing the paradigm,” he adds. “I can tell you that every city will be leveraging AI, not just for video sensing and intelligence, from edge to cloud, but you will have AI in sidewalks, AI in bridges, buildings, bikes, traffic signals and more. Pervasive, right? Because this will deliver value to citizens. They’ll come to expect it. It will not be the exception. It will be the norm.”

Let’s block ads! (Why?)

Big Data – VentureBeat

cameras, data, from, gold, into, Million, Nvidia’s, Plan, turn
  • Recent Posts

    • The Dynamics 365 Sales Mobile App Helps Salespeople Stay Productive From Anywhere
    • THEY CAN FIND THE GUY WHO BROKE A WINDOW BUT NOT A MURDERER?
    • TIBCO4Good and She Loves Data Offer Free Data Skills Workshops During a Time of Vulnerability
    • Aurora partners with Paccar to develop driverless trucks
    • “Without Data, Nothing” — Building Apps That Last With Data
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited