• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Researchers improve robot-assisted surgery with AI

July 26, 2019   Big Data
 Researchers improve robot assisted surgery with AI

Robot-assisted surgery promises nothing short of a paradigm shift in medicine. In subfields from urology and gynecology to cardiothoracic and pediatric surgery, it’s enabling surgeons to perform complex procedures without having to resort to laparotomy (surgical incisions into the abdomen). Better still, surgical robots contain cameras that capture every knife and needle movement and suture stitch, contributing to a video library that could be used to train gesture recognition systems for skills assessments, step-by-step instruction, and automation of pre- and post-operative tasks.

The trouble is, state-of-the-art methods for action recognition require samples like videos to be manually labeled, which tends to be both time-consuming and error-prone. Perhaps that’s why researchers at the Robotics Institute at UCL in London, the Polytechnic University of Milan, and the University of Verona recently explored in a preprint paper on Arxiv.org (“Weakly Supervised Recognition of Surgical Gestures“) a method that requires no more than several annotated demonstrations to train a recognition neural network algorithm.

By way of background, neural networks consist of neurons that are arranged in layers and transmit signals to other neurons. Those signals — the product of data, or inputs, fed into the neural network — travel from layer to layer and slowly “tune” the network by adjusting the synaptic strength (weights) of each connection. Over time, the network extracts features from the data set and identifies cross-sample trends, eventually learning to make predictions.

In this study, in order to find a mixture of multi-dimensional probability distributions that best modeled their surgical demonstration input corpus, the researchers leveraged an unsupervised recognition algorithm based on a classical Gaussian mixture model (GMM). It’s an ideal model architecture for tasks that don’t rigidly influence each other, wrote the researchers, like simultaneous segmentation and classification. Additionally, it’s intuitive because the GMM-based algorithms represent action classes through independent means and other variables.

The researchers tapped three surgical demonstrations — two from expert users and one from an intermediate user — along with ground truth annotations to initialize the GMM-based algorithm’s parameters. To validate it, the team sourced a public data set — JIGSAWS — containing labeled video and kinematic data captured during demos by eight surgeons with Intuitive Surgical’s da Vinci Surgical System. The paper’s coauthors say that in a set of experiments — with the proposed annotations and by redefining the actions and optimizing the inputs — they managed to boost overall recognition accuracy by 25% compared with the baseline and improve action class recognition.

“Experimental results on real surgical kinematic trajectories during a training exercise confirm that weakly supervised initialization significantly outperforms standard task-agnostic initialization methods,” wrote the coauthors.

That said, they concede that their experimental data sets were relatively small and that GMM approaches aren’t generally robust against “increasingly variable” data. But they say that in future work they intend to further explore the effects of weak supervision on the initialization of probability distributions in unsupervised HMM-based approaches.

Let’s block ads! (Why?)

Big Data – VentureBeat

Improve, researchers, robotassisted, Surgery
  • Recent Posts

    • Delivery startup Refraction AI raises $4.2M to expand service areas
    • ANOTHER SIMPLE EXAMPLE OF FASCIST NAZI LEFTISTS AT WORK
    • Nvidia and Harvard develop AI tool that speeds up genome analysis
    • Export with large E instead of small e
    • You’ll be back
  • Categories

  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited