• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Researchers teach robots to use inference to complete complex tasks

November 16, 2019   Big Data

There’s much robots can achieve by observing human demonstrations, like the actions necessary to move a box of crackers from a counter to storage. But imitation learning is by no means a perfect science — demonstrators often complete subgoals that distract systems from overarching tasks.

To solve this, researchers at the University of Washington, Stanford University, the University of Illinois Urbana-Champaign, the University of Toronto, and Nvidia propose an “inverse planning” system that taps motions or low-level trajectories to capture the intention of actions. After evaluating their technique by collecting and testing against a corpus of video demonstrations conditioned on a set of kitchen goals, the team reports that their motion reasoning approach improves task success by over 20%.

The researchers lay out the full extent of the problem in a preprint paper detailing their work. In an environment like, say, a cluttered kitchen, they note that objects are configured in such a way that the goal is obfuscated. Recognizing an action sequence isn’t enough, because a task could have myriad motivations. For example, a demonstrator might move a tablecloth both to remove it from view and reach a knife underneath it.

 Researchers teach robots to use inference to complete complex tasks

The researchers’ AI system, then, outputs the symbolic goal of a task given a real-world video demonstration, which can then be used as input for robotics systems to reproduce said task. To test it, they had it learn a 24-task cooking objective where a human cook poured and prepped ingredients — tomato soup and spam — which were initially blocked by three objects, including a cracker box, a mustard bottle, and a sugar box. They recorded a total of four demonstrations for each task, resulting in a total of 96 demonstrations (excluding videos with substantial missing poses), and then they divided the tasks in two — 12 for system training and 12 for testing.

The researchers say that their full model explicitly performed motion reasoning about the objects in the demonstration, and thus wouldn’t blindly take all the object movements as intentional. Additionally, they note that it enabled imitation learning across different environments. In one experiment, the system managed to successfully extract the correct goal despite the manipulation of an object (the aforementioned sugar box). Although the sugar box appeared in the kitchen, the robot recognized it didn’t need to move it because it was already out of the way.

 Researchers teach robots to use inference to complete complex tasks

“Our results show that this allows us to significantly outperform previous approaches that aim to infer the goal based on either just motion planning or task planning,” wrote the coauthors. “In addition, we show that our goal-based formulation enables the robot to reproduce the same goal in a real kitchen by just watching the video demonstration from a mockup kitchen.”

Let’s block ads! (Why?)

Big Data – VentureBeat

complete, Complex, inference, researchers, Robots, Tasks, Teach
  • Recent Posts

    • Now make soup!
    • Attach2Dynamics Or SharePoint Security Sync – Choose your smart app for effective document management in Dynamics 365 CRM/Power Apps.
    • 5 jobs that you should apply for this week (before it’s too late)
    • SQL Server authentication methods, logins, and database users
    • DAE solver fails for system of coupled partial differential equations
  • Categories

  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited