• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Stanford researchers propose AI that figures out how to use real-world objects

January 10, 2021   Big Data

Transform 2021

Join us for the world’s leading event about accelerating enterprise transformation with AI and Data, for enterprise technology decision-makers, presented by the #1 publisher in AI and Data

Learn More


One longstanding goal of AI research is to allow robots to meaningfully interact with real-world environments. In a recent paper, researchers at Stanford and Facebook took a step toward this by extracting information related to actions like pushing or pulling objects with movable parts and using it to train an AI model. For example, given a drawer, their model can predict that applying a pulling force on the handle would open the drawer.

As the researchers note, humans interact with a plethora of objects around them. What makes this possible is our understanding of what can be done with each object, where this interaction may occur, and how we must move our bodies to accomplish it. Not only do people understand what actions will be successful, but they intuitively know which ones will not.

The coauthors considered long-term interactions with objects as sequences of short-term “atomic” interactions, like pushing and pulling. This limited the scope of their work to plausible short-term interactions a robot could perform given the current state of an object. These interactions were further decomposed into “where” and “how” — for example, which handle on a cabinet a robot should pull and whether a robot should pull parallel or perpendicular to the handle.

These observations allowed the researchers to formulate their task as one of dense visual prediction. They developed a model that, given a depth or color image of an object, learned to infer whether a certain action could be performed and how it should be executed. For each pixel, the model provided an “actionability” score, action proposals, and success likelihoods.

 Stanford researchers propose AI that figures out how to use real world objects

“Our approach allows an agent to learn these by simply interacting with various objects, and recording the outcomes of its actions — labeling ones that cause a desirable state change as successful,” the coauthors wrote. “We empirically show that our method successfully learns to predict possible actions for novel objects, and does so even for previously unseen categories.”

The researchers used a simulator called SAPIEN for learning and testing their approach across six types of interactions covering 972 shapes over 15 commonly seen indoor object categories. In experiments, they visualized the model’s action scoring predictions over real-world 3D scans from open source datasets. While they concede that there’s no guarantee for the predictions over pixels outside the articulated parts, the results made sense if motion was allowed for the entire objects.

“Our [model] learns to extract geometric features that are action-specific and gripper-aware. For example, for pulling, it predicted higher scores over high-curvature regions such as part boundaries and handles, while for pushing, almost all flat surface pixels belonging to a pushable part are equally highlighted and the pixels around handles are reasonably predicted to be not pushable due to object-gripper collisions … While we use simulated environments for learning as they allow efficient interaction, we also find that our learned system generalizes to real-world scans and images.”

The researchers admit that their work has limitations. For one, the model can only take a single frame as input, which introduces ambiguities if the articulated part is in motion. It’s also limited to hard-coded motion trajectories. In future work, however, the coauthors plan to generalize the model to freeform interactions.

VentureBeat

VentureBeat’s mission is to be a digital townsquare for technical decision makers to gain knowledge about transformative technology and transact.

Our site delivers essential information on data technologies and strategies to guide you as you lead your organizations. We invite you to become a member of our community, to access:

  • up-to-date information on the subjects of interest to you,
  • our newsletters
  • gated thought-leader content and discounted access to our prized events, such as Transform
  • networking features, and more.

Become a member

Let’s block ads! (Why?)

Big Data – VentureBeat

Figures’, Objects, Propose, Realworld, researchers, Stanford
  • Recent Posts

    • Accelerate Your Data Strategies and Investments to Stay Competitive in the Banking Sector
    • SQL Server Security – Fixed server and database roles
    • Teradata Named a Leader in Cloud Data Warehouse Evaluation by Independent Research Firm
    • Derivative of a norm
    • TODAY’S OPEN THREAD
  • Categories

  • Archives

    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited