• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Ubisoft uses AI to teach a car to drive itself in a racing game

December 29, 2019   Big Data
 Ubisoft uses AI to teach a car to drive itself in a racing game

Reinforcement learning, an AI training technique that employs rewards to drive software policies toward goals, has been applied successfully to domains from industrial robotics to drug discovery. But while firms including OpenAI and Alphabet’s DeepMind have investigated its efficacy in video games like Dota 2, Quake III Arena, and StarCraft 2, few to date have studied its use under constraints like those encountered in the game industry.

That’s presumably why Ubisoft La Forge, game developer Ubisoft’s eponymous prototyping space, proposed in a recent paper an algorithm that’s able to handle discrete, continuous video game actions in a “principled” and predictable way. They set it loose on a “commercial game” (likely The Crew or The Crew 2, though neither is explicitly mentioned) and report that it’s competitive with state-of-the-art benchmark tasks.

“Reinforcement Learning applications in video games have recently seen massive advances coming from the research community, with agents trained to play Atari games from pixels or to be competitive with the best players in the world in complicated imperfect information games,” wrote the coauthors of a paper describing the work. “These systems have comparatively seen little use within the video game industry, and we believe lack of accessibility to be a major reason behind this. Indeed, really impressive results … are produced by large research groups with computational resources well beyond what is typically available within video game studios.”

The Ubisoft team, then, sought to devise a reinforcement learning approach that’d address common challenges in video game development. They note that data sample collection tends to be a lot slower generally, and that there exist time budget constraints over the runtime performance of agents.

Their solution is based on the Soft Actor-Critic architecture proposed early last year by researchers at the University of California, Berkeley, which is more sample-efficient than traditional reinforcement learning algorithms and which robustly learns to generalize to conditions that it hasn’t seen before. They extend it to a hybrid setting with both continuous and discrete actions, a situation often encountered in video games (e.g., when a player has the freedom to perform actions like moving and jumping, each of which are associated with parameters like target coordinates and direction).

The Ubisoft researchers evaluated their algorithm on three environments designed to benchmark reinforcement learning systems, including a simple platformer-like game and two soccer-based games. They claim that its performance fell slightly short of industry-leading techniques, which they attribute to an architectural quirk. But they say that in a separate test, they successfully used it to train a video game vehicle with two continuous actions (acceleration and steering) and one binary discrete action (hand brake), the objective being to follow a given path as quickly as possible in environments the agent didn’t encounter during training.

“We showed that Hybrid SAC can be successfully applied to train a car on a high-speed driving task in a commercial video game,” wrote the researchers, who futher noted that their approach can accommodate a wide range of potential ways for an agent to interact with a video game environment, such as when the agent has the same inputs as a player (whose controller might be equipped with an analog stick that provides continuous values and buttons that can be pressed to yield discrete actions through combinations). “[This demonstrates] the practical usefulness of such an algorithm for the video game industry.”

Let’s block ads! (Why?)

Big Data – VentureBeat

Drive, Game, itself, RACING, Teach, Ubisoft, Uses
  • Recent Posts

    • P3 Jobs: Time to Come Home?
    • NOW, THIS IS WHAT I CALL AVANTE-GARDE!
    • Why the open banking movement is gaining momentum (VB Live)
    • OUR MAGNIFICENT UNIVERSE
    • What to Avoid When Creating an Intranet
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited