• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Use Cases for Azure Analysis Services (Part 2)

November 30, 2016   Self-Service BI

This is part 2 of a discussion about a new service in Microsoft Azure: Azure Analysis Services. Azure AS is a Platform-as-a-Service (PaaS) offering which is in public preview mode (as of November 2016).

Part 1: Why a Semantic Layer Like Azure Analysis Services is Relevant

Part 2: Use Cases for Azure Analysis Services {you are here}

Part 3: Where Azure Analysis Services Fits Into BI & Analytics Architecture {coming soon}

Because Azure AS is a cloud service, it has several meaningful benefits we’ve come to associated with this type of PaaS service:

  • Ability to scale up or down to increase performance when the demand is there (yet not pay for that level of performance when it’s not required)
  • Ability to pause to save money if no queries are issued during a particular period of time (such as overnight on Dev/Test databases)
  • No need to provision hardware, handle upgrades nor patching
  • Inherent redundancy of the data

Note: at this early time of the public preview, not every feature mentioned in this post is available just yet, but they are coming.

Azure SSAS May Be Beneficial For…

Upsizing Data Size from Power BI

If you import the data into a Power BI data model (vs. issuing queries via DirectQuery mode), the data imported is currently limited to 1GB of data if you want to upload the file to the Power BI Service. This 1GB is after it’s been compressed into its in-memory columnar format. The columnar compression is very efficient, so it can contain quite a bit of data, but 1GB certainly doesn’t represent enterprise level data models (again, I’m referring to imported data not DirectQuery scenarios). Upsizing to Analysis Services changes all that since it can handle larger data volumes imported to the in-memory data model.

Faster Data Refresh Schedules than Power BI

Currently you can set a Power BI dataset (which has been imported) to refresh up to 4 times per day. If your data latency requirements dictate fresher data than that, then Analysis Services can be scheduled more frequently. (Just like the previous item, this refers to imported data and not DirectQuery models.)

Varying Levels of Peak Workloads

Let’s say during month-end close the reporting activity spikes much higher than the rest of a typical month. In this situation, it’s a shame to provision hardware that is underutilized a large percentage of the rest of the month. This type of scenario makes a scalable PaaS service more attractive than dedicated hardware. Do note that currently Azure SSAS scales compute, known as the QPU or Query Processing Unit level, along with max data size (which is different than some other Azure services which decouple those two).

User Activity Occurs During Fixed Hours Only

We will be able to pause the Azure AS service in order to save charges. If you’re a regional company with users who don’t need to query the system from, say 10pm to 7am, you’ll be able to pause the service programmatically if you choose.

Cloud or Hybrid Fits Your Strategic IT Direction

If you’re purposely attempting to reduce the overhead of running a data center, then more and more service offerings like this one may be a fit. To the extent you’re using multiple services such as Azure SQL Data Warehouse and/or Azure SQL Database, I’m hoping we’re going to see some performance benefits (assuming you’ve selected Azure locations in close proximity to each other for the related services that pass data around).

You Are Short on Performance Tuning Expertise

I tend to get a little preachy that running workloads in the cloud does *not* mean your DBA can retire. However, it is certainly the case that there’s less administrative oversight with cloud services. With this Azure AS PaaS service, rather than tuning your server specs, instead you would change the scale level for your instance in Azure – certainly a lot easier because there’s a way fewer “knobs” to adjust. Having said that, there’s still *lots* of things to pay attention to: performance of queries from the original source (if your data refresh window is small, or if you are using DirectQuery mode), and also good design patterns are always *incredibly* important in order to achieve optimal performance from an Analysis Services model.

Getting New Features Fastest

We’re going to be seeing new features hit Azure Analysis Services faster than SQL Server Analysis Services. Using the AAS cloud service, versus the SSAS service which is part of the SQL Server box product, offers that if getting the latest and greatest quickly appeals to you.

Finding More Information

Kasper de Jonge’s blog: Analysis Services in Azure, When and Why (I had 95% of this post written before Kasper published his, so I decided to publish mine anyway even though they’re fairly similar.)

Azure Documentation – What is Azure Analysis Services?

Feedback to the Product Team – Feedback on Azure AS

Channel 9 Videos: Azure AS Videos

You Might Also Like…

Building Blocks of Cortana Intelligence Suite in Azure

Power BI Features End-to-End

Let’s block ads! (Why?)

Blog – SQL Chick

Analysis, Azure, Cases, Part, Services
  • Recent Posts

    • Accelerate Your Data Strategies and Investments to Stay Competitive in the Banking Sector
    • SQL Server Security – Fixed server and database roles
    • Teradata Named a Leader in Cloud Data Warehouse Evaluation by Independent Research Firm
    • Derivative of a norm
    • TODAY’S OPEN THREAD
  • Categories

  • Archives

    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited