• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Reasoning in CRM

May 2, 2017   CRM News and Info

It gives some measure of the importance we give to AI that I went to two conferences last week and sat through two panel sessions on the subject. At CRM Evolution, I was part of the discussion in a breakfast session Paul Greenberg organizes each year. Then I flew to Las Vegas for the Oracle CX show. There executives involved in the adaptive intelligent applications product line tried to define the basics in a session for analysts and reporters.

I have to say that neither session was especially illuminating, which is not to cast aspersions on any of the participants but more to provide a gauge of how early we still are in the market cycle. If it seems hard to define AI today, it’s equally difficult to wrap our heads around its potential.

Who Know Best?

In Washington, at Evolution, people talked about the trust factor and how easy or difficult it will be to accept that an algorithm might know more about a situation than the user. For instance, a GPS system will “know” about road conditions that humans can’t see.

In Las Vegas, the discussion started with the now typical dystopian fear that algorithms or bots might be about to steal our jobs. For some reason, this seems to engender visceral fear in the population in a way that packing up factories and shipping them to low-wage countries might not.

It struck me, due to an accumulation of research, that while we might talk about lost jobs or trust issues, the reasons for unease about AI — or whatever we decide to call it — might be more fundamental. It might be that AI signals the replacement or significant diminution of a style of thinking that is uniquely human — something that has evolved with us — with a style of thought that has been part of our experience only since the Renaissance and the development of the scientific method.

First, let’s agree on terms. The broadly knowledgeable silicon- and metal-based intelligent life form that has lurked in science fiction for the better part of a century is still fiction and will be for some time. Those who are concerned about such an entity replacing us will have to wait many more years before something like HAL is available. Then, like the first steam engines, we’ll discover it’s too big to move around, so it will be limited.

The AI that we increasingly see in CRM and other business apps is rather one dimensional. It’s able to tell you the traffic but nothing else. It’s analogous to the robots on car assembly lines — each programmed to make a weld or grind a surface, but that’s it. Making an assembly line is a matter of setting up many robots in a row, each doing something different, and not empowering some super machine to do it all.

So what’s everyone so concerned about? Simply put, it’s the difference between deductive and inductive reasoning, and now we enter the weeds, just a little.

Pushing the Limits

Deductive reasoning is something we humans do well, and it involves beginning with a premise and deriving conclusions. Surprisingly, math consists of a lot of deductive reasoning. Certain assumptions or postulates start off the reasoning from which we make deductions. More generally, we can deduce from basic ideas too, like this famous syllogism:

1. All men are mortal.
2. Socrates is a man.
3. Therefore, Socrates is mortal.

Note, however, that getting a true and useful conclusion requires a true and useful assumption, postulate or statement. If we’d started with “All men have feathers,” we would have gotten nowhere fast, even though our logic would have been impeccable.

Politics is like that today, and without trying to hurt anyone’s feelings, there are a lot of examples of situations in which we move backward from conclusions to discover the premises it would take to get there — but that’s not the purpose of this piece.

On the other hand, inductive reasoning is the logic of science and the kind of thinking we all do sometimes, especially when there’s time — and probably paper and pencil. Inductive reasoning involves gathering data and applying statistics to discern patterns. It’s the heart of the scientific method and the reason we live in the world we do instead of one in which we’re all subsistence hunters and farmers.

Inductive reasoning involves the language of hypothesis and proof and theory — but not belief. We believe what the data tell us, not what we assume. When the data reveal something wrong about our beliefs, we change beliefs. We don’t work backward to discover our premises. Inductive reasoning is what drives AI, and I think it is the heart of our heartburn.

In both sessions I attended last week, someone in the audience inevitably brought up the trust issue — as in, “I can’t see how I can trust an algorithm and feel I simply must have the option to override it with my gut instinct.”

If I unpack this, I get the notion that we’re comfortable with our deductions and the premises they spring from, and it’s rather frightening to have to rely on not much more than statistics. Yet the times in human history when we’ve made progress are precisely those times when we pushed back the boundaries of premise and belief, and substituted cold, hard facts derived from data.

What’s different today is that we don’t have a single man like Galileo proposing that the Earth revolves around the sun, because that’s what his data tells him. We have millions of them — and their proposals are both profound and banal. In the process, we are rapidly pushing deduction to a smaller footprint than has ever been the case for humanity, and that can feel frightening.
end enn Reasoning in CRM


Denis%20Pombriant Reasoning in CRMDenis Pombriant is a well-known CRM industry researcher, strategist, writer and speaker. His new book, You Can’t Buy Customer Loyalty, But You Can Earn It, is now available on Amazon. His 2015 book, Solve for the Customer, is also available there. He can be reached at
denis.pombriant@beagleresearch.com.

Let’s block ads! (Why?)

CRM Buyer

Reasoning
  • Recent Posts

    • Syncing Dynamics 365 User Permissions with SharePoint
    • solve for variable in iterator limit
    • THE UNIVERSE: A WONDROUS PLACE
    • 2020 ERP/CRM Software Blog Award Winners
    • Top 10 CRM Software Blog Posts in 2020
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited