• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

6 Tips for Data Teams to Improve Collaboration

December 11, 2019   Sisense

Everyone wants to get more out of their data, but how exactly to do that can leave you scratching your head. Our BI Best Practices demystify the analytics world and empower you with actionable how-to guidance.

In the right hands, data is the ultimate means to answer important business questions. The problem is that when data is used incorrectly, it still provides answers (just bad ones). The best way to avoid decisions made based on that bad information is to improve the relationships between the employees analyzing data and the employees acting on that information. 

Today, data questions often involve someone from a line-of-business team and someone from a data team. Both people bring their own individual expertise to the collaboration, but these projects can easily fall into the trap of unclear expectations and insufficient communication. 

Before building a dashboard to answer questions, data experts need to sit down with their line-of-business counterparts and have a discussion about the purpose of that dashboard. Here are a few tips for data experts to get the most out of that meeting: 

CTA Blog Banner Business Analyst 770x250 770x250 6 Tips for Data Teams to Improve Collaboration

Go into every dashboard with an open mind

It’s crucial to start every new data inquiry with a fresh mind. Every assumption the data experts make is an opportunity for the overall insight to lose value. On the other side, provided assumptions and business context can accelerate the data work for a faster time to value. The goal of every dashboard creator in a data request meeting should be to fully understand the data consumer’s needs and workflow. That means listening to their individual context and letting the investigation go where the data leads. If you drive the conversation or ask leading questions, you’ll end up at the resolution that you want, not necessarily the one that’s most valuable.

Get to know the individual requesting the data

Like most collaborative projects, empathy is critical to success. I like to start data request meetings by asking the data customer to walk me through their typical day. In some cases, it even helps me to shadow them for a while. What I’m looking for is a complete picture of the way that individual uses data. There might be pain points or missed opportunities for data to be used that I can help integrate. Asking someone about their typical day is also an easy way to get them communicating openly. It disarms them and puts the focus on the personal connection rather than a business problem.

Understand the business value behind a data request

An easy way for a data inquiry to get off track is for the dashboard creator to receive a request and cut straight to building a dashboard. Sometimes a request for a specific metric might miss the bigger question that data can solve. For example, a CS person might say “give me churn” but what they mean is “we need to find a way to minimize churn.” If you were to build a chart that simply listed churn over time, you’d miss all the other data points that correlate with churn. It’s often the data team’s job to connect data from different teams and maximize business value. Narrowing in on one team’s KPIs is an easy way to take your eye off the real goal. If you understand what is at the heart of the data request, it’ll be easier to work backward and find the right questions for the data to answer.

Work in pairs if possible

It’s true that two heads are generally better than one, but this concept is less about brainpower than it is about having one set of hands dedicated to note-taking. While a second data expert can definitely help understand the bigger questions in a meeting about data, it is invaluable to the flow of the conversation to have someone designated as a note-taker. Since the conversation moves at the speed of the slowest participant, it is extremely disruptive to have one person focusing on both moving the conversation forward and also documenting the important information for later. If a paired approach isn’t possible, it’s always an option to record the conversation, but I also recommend sketching out potential charts during these sessions, and that doesn’t translate well through audio.

Start general, then get specific

It’s likely that the initial dashboard request will be for a very pointed metric. This isn’t a bad way to start, but it’s the data expert’s job to guide the bring the focus to a bigger general question that this data can solve and uncover complementary data that can be included in that dashboard. Consider the example of churn from earlier. Presumably, the company’s goal is to maximize revenue and the inquiry into churn is being done to that end. It’s probably valuable to first create a variety of charts that illustrate the effect of churn on revenue. From there, it might also be useful to consider churn for individual cohorts, find factors that correlate in some way with churn or locate levers that will improve churn. Organizing the questions you ask from general to specific will also help you organize the charts on your dashboard when it’s time to create that asset.

Build an unsorted list of questions to answer with data

At the end of the meeting, the best thing to come away with is a list of questions that can be translated into data queries. An easy way to build this list is to open a document and just list the big questions that come up as you have exploratory conversations and try to understand the bigger business issue. If you can work as a pair, your note taker can do this part too. When the meeting is over (or maybe afterward if you recorded the conversation and want some time to go back and review notes), you can submit the list of questions to the dashboard requester and make sure that you have everything covered. Once that list is approved, you can start mapping each of the questions into a chart that will be organized and placed on your final dashboard.

Thinking long instead of short

Building a dashboard isn’t a straight line: there’s a lot of back and forth, questioning, editing, and iterating between the initial request and the finished product. These tips will help you build a strong foundation for this process and leave you in the best position for creating a dashboard that can really help your users make smarter decisions. Try embracing a collaborative process; you’ll be glad you took the time, asked the hard questions.

CTA Blog Banner Business Analyst 770x250 770x250 6 Tips for Data Teams to Improve Collaboration

Christine Quan is a seasoned data and analytics veteran, focused on data visualization theory and building tools to empower data teams. She’s an expert at constructing SQL queries and building visualizations in R, Python, or Javascript.

Let’s block ads! (Why?)

Blog – Sisense

collaboration, data, Improve, Teams, Tips
  • Recent Posts

    • Ba’al comes to CPAC, Ted Cruz jokes about his Cancun trip
    • Optimizing data migration/integration with Power Platform
    • AI Weekly: Biden calls for $37 billion to address chip shortage
    • NOT WHAT THEY MEANT BY “BUILDING ON THE BACKS OF….”
    • Why Healthcare Needs New Data and Analytics Solutions Before the Next Pandemic
  • Categories

  • Archives

    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited