• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

How To Calculate Average Sales

November 10, 2019   Sisense

No matter what industry you’re in, any sector that deals with customers will have to keep track of their sales. When you need a quick way to monitor your company’s success in meeting objectives, sales provide one of the easiest metrics since it is a direct display of efficiency related to profits. Even so, raw sales data can be overwhelming and may not always paint the clearest picture.

Using average sales across different periods can give you a better idea of how well your sales strategies and marketing campaigns are performing, which tactics are connecting with consumers, and how successful your sales team is at converting leads. More importantly, it gives you a straightforward way to establish a standard for measuring success and failure. Calculating average sales is an uncomplicated process and can help steer your business decisions for greater success.

Manage and Customize 1200x628 770x403 How To Calculate Average Sales

Why measure average sales?

More than just an eagle’s eye view of your sales operations, average sales can also give you a granular view at the results of every sale. Measuring average sales by customer can deliver useful insights such as how many dollars customers are spending at the point of sale, and how that data compares to historical data.

On a broader level, you can compare the efficiency of different teams, stores, and branches by measuring their monthly and daily sales against historic averages and each other. This is important when choosing how to allocate budgets, deciding where to trim resources, and providing greater support. By understanding the historic patterns and combining them with more real-time data, you can make smarter decisions regarding your sales pipeline.

How to calculate average sales

Calculating your average sales depends on two factors: a period or frequency you want to analyze and the total sales value for that period. Average sales can be measured on a much smaller scale, such as daily or weekly, or on a larger scale like monthly and even annually. 

To calculate the average sales over your chosen period, you can simply find the total value of all sales orders in the chosen timeframe and divide by the intervals. For example, you can calculate average sales per month by taking the value of sales over a year and dividing by 12 (the number of months in the year). If the total sales for the year were $ 1,000,000, monthly sales would be calculated as follows:

 How To Calculate Average Sales

Average sales per month, in this case, would be roughly $ 83,000. 

Daily average sales are also a common calculation, and they can vary based on the broader timeframe being measured. For example, you could measure daily average sales over a period of a single month to compare year-over-year data or calculate daily average sales over a full year to see how stores and sales teams performed throughout a 12-month period. In this case, the calculation would not change, except for replacing the top number for annual total sales, and dividing by the total number of workdays.

A variant average sales calculation

Another useful way to track the average value of a sale is to measure how effective your sales team is on a per-customer basis. While overall visitors and the number of sales may be on the rise, if the value of sales per customer is declining, your overall revenues may actually fall. 

In this case, the division is similar to average sales, but instead of a time frame, you can divide the total sales value by the number of transactions completed during the period you are analyzing. For instance, if your total sales for the day were $ 15,000, and you completed 35 unique transactions, the average value of sales would be approximately $ 528 per customer. The formula to calculate average sales value is as follows:

 How To Calculate Average Sales

Other KPIs you can include

Average sales are a great place to start tracking your sales effort, but to gain more actionable insights, your dashboard should also include other KPIs that can provide useful context. These are just a few of the useful sales dashboard examples of KPIs you can include when building your BI platform.

  • Average Revenue Per Unit (ARPU) — This metric is like average sale value but measures how much revenue a single customer or user will generate. This number is found by measuring revenue against the total number of units.
  • Sales per Rep — Average sales don’t give you a look into how individual salespeople may be performing. Adding sales per rep will provide a more granular look at your sales operations.
  • Opex to Sales — Raw sales data provides insight, but little context. Understanding how operating expenses relate to sales helps clarify the real value of a sale. If the Opex is too high, even large sales offer little real value.

Looking for other ways to measure your sales numbers? Explore our interactive sales dashboards!

Tags: how to’s | KPIs

Let’s block ads! (Why?)

Blog – Sisense

Average, Calculate, Sales
  • Recent Posts

    • The Neanderthals
    • What the swarm of new Azure announcements mean
    • Importance of Integrating SharePoint and Dynamics 365 in an SMB
    • InfoWars Surrenders
    • Invest Your Time in the Right Skills to Become a Data Scientist in 2021
  • Categories

  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited