• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Why You Should Already Have a Data Governance Strategy

June 19, 2018   Sisense

Garbage in, garbage out. This motto has been true ever since punched cards and teletype terminals. Today’s sophisticated IT systems depend just as much on good quality data to bring value to their users, whether in accounting, production, or business intelligence. However, data doesn’t automatically format itself properly, any more than it proactively tells you where it’s hiding or how it should be used. No, data just is. If you want your business data to satisfy criteria of availability, usability, integrity, and security, you need a data governance strategy.

Data governance in general is an overarching strategy for organizations to ensure the data they use is clean, accurate, usable, and secure. Data stakeholders from business units, the compliance department, and IT are best positioned to lead data governance, although the matter is important enough to warrant CEO attention too. Some organizations go as far as appointing a Data Governance Officer to take overall charge. The high-level goal is to have consistent, reliable data sets to evaluate enterprise performance and make management decisions.

Ad-hoc approaches are likely to come back to haunt you. Data governance has to become systematic, as big data multiplies in type and volume, and users seek to answer more complex business questions. Typically, that means setting up standards and processes for acquiring and handling data, as well as procedures to make sure those processes are being followed. If you’re wondering whether it’s all worth it, the following five reasons may convince you.

banner blog 2 Why You Should Already Have a Data Governance Strategy

Reason 1: Ensure data availability

Even business intelligence (BI) systems won’t look very smart, if users cannot find the data needed to power them. In particular, self-service BI means that the data must be easy enough to locate and to use. After years of hearing about the sinfulness of organizational silos, it should be clear that even if individual departments “own” data, the governance of that data must be done in the same way across the organization. Authorization to use the data may be restricted, as in the case of sensitive customer data, but users should not ignore its existence, when it could help them in their work.

Availability is also a matter of having appropriate data that is easy enough to use. With a trend nowadays to store unstructured data from different sources in non-relational databases or data lakes, it can be difficult to know what kind of data is being acquired and how to process it. Data governance is therefore a matter of first setting up data capture to acquire what your enterprise and its different departments need, rather than everything under the sun. Governance then also ensures that data schemas are applied to organize data when it is stored, or that tools are available for users to process data, for example to run business analytics from non-relational (NoSQL) databases.

Reason 2: Ensure users are working with consistent data

When the CFO and the COO work from different sets of data and reach different conclusions about the same subjects, things are going to be difficult. The same is true at all other levels in an enterprise. Users must have access to consistent, reliable data, so that comparisons make sense and conclusions can be checked. This is already a good reason for making sure that data governance is driven across the organization, by a team of executives, managers, and data stewards with the knowledge and authority to make sure the same rules are followed by all.

Global data governance initiatives may also grow out of attempts to improve data quality at departmental levels, where individual systems and databases were not planned for information sharing. The data governance team must deal with such situations, for instance, by harmonizing departmental information resources. Increased consistency in data means fewer arguments at executive level, less doubt about the validity of data being analyzed, and higher confidence in decision making.

Reason 3: Determining which data to keep and which to delete

The risks of data hoarding are the same as those of physical hoarding. IT servers and storage units full of useless junk make it hard to locate any data of value or to do anything useful with it afterwards. Users use stale or irrelevant data as the basis for important business decisions, IT department expenses mushroom, and vulnerability to data breaches increases. The problem is unfortunately common. 33% of the data stored by organizations is simply ROT (redundant, obsolete, or trivial), according to the Veritas Data Genomics Index 2017 survey.

Yet things don’t have to be that way. Most data does not have to be kept for decades, “just in case.” As an example, retailing leader Walmart uses only the last four weeks’ transactional data for its daily merchandising analytics. It is part of good data governance strategy to carefully consider which data is important to the organization and which should be destroyed. Data governance also includes procedures for employees to make sure data is not unnecessarily duplicated, as well as policies for systematic data retirement (for instance, for archiving or destruction) according to age or other pertinent criteria.

Reason 4: Resolve analysis and reporting issues

An important dimension in data governance is the consistency across an organization of its metrics, as well as the data driving them. Without clearly recorded standards for metrics, people may use the same word, yet mean different things. Business analytics are a case in point, when analytics tools vary from one department to another. Self-service analytics or business intelligence can be a boon to an enterprise, but only if people interpret metrics and reports in a consistent way.

When reports lack clarification, the temptation is often to blame technology. The root cause, however, is often the mis-configuration of the tools and systems involved. It may even be in their faulty application, as in the case of reporting tools being wrongly applied to production databases, triggering problems in performance that mean that neither transactions nor analytics are satisfactorily accomplished. Ripping out and replacing fundamentally sound systems is not the solution. Instead, improved data governance brings more benefit, faster, and for far less cost.

Reason 5: Security and compliance with laws concerning data governance

Consequences for non-compliance with data regulations can be enormous, especially where private individuals’ information is concerned. A case in point, the European General Data Protection Regulation (GDPR) for May 2018 sets non-compliance fines up to some $ 22 million or four percent of the offender’s worldwide turnover, whichever is the higher, for data misuse or breach affecting European citizens.

Effective data governance helps an organization to avoid such issues, by defining how its data is to be acquired, stored, backed up, and secured against accidents, theft, or misuse. These definitions also include provision for audits and controls to ensure that the procedures are followed. Realistically, organizations will also conduct suitable awareness campaigns to makes sure that all employees working with confidential company, customer, or partner data understand the importance of data governance and its rules. Education and awareness campaigns will become increasingly important as user access to self-service solutions increases, as will the levels of data security already inherent in those solutions.

Conclusion

If you think about data as a strategic asset, the idea of governance becomes natural. Company finances must be kept in order with the necessary oversight and audits, workplace safety must be guaranteed and respect the relevant regulations, so why should data – often a key differentiator and a confidential commodity – be any different? As IT self-service and end-user empowerment grow, the importance of good data governance increases too. Business user autonomy in spotting trends and taking decisions can help an enterprise become more responsive and competitive, but not if it is founded on data anarchy.

Effective data governance is also a continuing process. Policy definition, review, adaptation, and audit, together with compliance reviews and quality control, are all regularly effected or repeated as a data governance life cycle. As such, data governance is never finished, because new sources, uses, and regulations about data are never finished either. For contexts such as business intelligence, especially in a self-service environment, good data governance helps users to use the right data in the right way, to generate business insights correctly and take sound business decisions.

banner blog 2 Why You Should Already Have a Data Governance Strategy

Tags: Data Analysis | Data Governance

Let’s block ads! (Why?)

Blog – Sisense

already, data, Governance, Should, Strategy
  • Recent Posts

    • OUR MAGNIFICENT UNIVERSE
    • What to Avoid When Creating an Intranet
    • Is Your Business Ready for the New Generation of Analytics?
    • Contest for control over the semantic layer for analytics begins in earnest
    • Switch from Old Record View to Kanban Board View to Maximize Business Productivity within Dynamics 365 CRM / PowerApps
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited