• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

How to Operationalize Your Data Science with Model Ops

May 24, 2020   TIBCO Spotfire

Reading Time: 3 minutes

Just as you wouldn’t train athletes and not have them compete, the same can be said about data science & machine learning (ML). You wouldn’t spend all this time and money on creating ML models without putting them into production, would you? You need your models infused into the business so they can help make crucial decisions.

Model Operations, or Model Ops, is the answer. Model Ops is the process of operationalizing data science by getting data science models into production and then managing them. The four main steps in the Model Ops process — build, manage, deploy/integrate, and monitor — form a repeatable cycle that you can leverage to reuse your models as software artifacts. Model Ops (aka ML Ops) ensures that models continue to deliver value to the organization. They also provide critical insights for managing the potential risks of model-based decision making, even as underlying business and technical conditions change.

Model Ops is a cross-functional, collaborative, continuous process that focuses on managing machine learning models to make them reusable and highly available via a repeatable deployment process.  What’s more, Model Ops encompasses various management aspects, such as model versioning, auditing, monitoring, and refreshing to ensure they are still delivering positive business value as conditions change.

Organizations need to realize the value of data science and machine learning models holistically, rather than as simply a process of developing models. While data science and ML processes are focused on building models, Model Ops focuses on operationalizing the entire data science pipeline within a business system.  Model Ops requires orchestration and coordination of many different personas within an organization including data engineers, data scientists, business users, IT operations, and app developers.  

In fact, many organizations have a dedicated Model Ops Engineer to facilitate this process. ML models that are people-facing must be unbiased, fair, and explainable; that is what the public demands and regulatory agencies and bodies increasingly require. For such applications, the ML Ops lifecycle must be designed to enable transparency and explainability when it comes to various risks.

The four-step approach to Model Ops 

In order to solve common pain points when it comes to model operationalization — such as the long delay between initiating a data science project and deploying the model — companies are taking a four-step approach: build, manage, deploy/integrate, and monitor. 

Build 

Data scientists use languages like Python and R, as well as commercial applications, to create analytics pipelines. They use innovative ML algorithms, they build predictive models, and they engineer new features that better represent the business problem and boost the predictive power of the model.  When building predictive models, data scientists need to consider both how the data is structured in production environments.  Similarly, for feature engineering, data scientists need to make sure that any new features that are created can be created fast enough in real-time production environments.  

Manage 

Models have a life cycle that is best managed from a central repository where their provenance, versioning, approval, testing, deployment, and eventual replacement can be tracked. Besides the metadata associated with model artifacts, the management platform and the repository should track accuracy metrics as well as dependencies between models and data sets.

Deploy/Integrate

A data science pipeline is taken from its original development environment and expressed in a form that can be executed independently and integrated into business applications. In the end, you need to be able to deploy the pipeline in a format/language that is appropriate to the target runtime environment.  

Monitor

After a model has been deployed, it is monitored for the accuracy of its predictions and impact on the business. The model needs to remain accurate even as the underlying data changes. This takes into account input from a human expert, or automatically, through ongoing retraining and champion-challenger loops with approval by a human, for example.

Realize the value of data science through Model Ops

By utilizing this four-step approach, organizations can realize the value of data science through Model Ops. It ensures that the best model gets embedded into a business system and that the model remains current. And companies that practice this have a big competitive advantage over those that consistently fail to operationalize models, and who fail to prioritize action over mere insight. Organizations can move beyond merely building models to truly operationalizing their data science usage.

Learn more about how to operationalize your data science by downloading this ebook. 

Let’s block ads! (Why?)

The TIBCO Blog

data, model, Operationalize, Science
  • Recent Posts

    • SQL Server authentication methods, logins, and database users
    • DAE solver fails for system of coupled partial differential equations
    • An Apology
    • 10 Benefits of Integrating Outlook with Dynamics 365 for an SMB
    • ETL company Airbyte raises $5.2M to integrate open source data
  • Categories

  • Archives

    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited