• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Shewhart Control Charts and Trend Charts with Limits Lines in TIBCO Spotfire

May 1, 2017   TIBCO Spotfire

Shewhart control charts are popular charts commonly used in statistical quality control for monitoring data from a business or industrial process. The goal of a statistical quality control program is to monitor, control, and reduce process variability. These charts often have three lines—a central line along with upper and lower control limits that are statistically derived. They enable the user to monitor a process for shifts, relative to a baseline historical period, that alter the location or variability of the measured statistic. There are a number of different types of charts, each with their own formula for calculating control limits and methods of applying rules to determine whether the process is in or out of control.

One common set of control charts consists of a pair of charts:

1. The individual chart which displays the individual measured values

2. The moving range chart which monitors the process variability.

Uses of control charts

—Monitor a process for special causes of variation that can occur. For example, a flood alarm that monitors water level.

—Control the location and variability of a process metric and not allow more process variation to occur than was present when the control limits were set. Often, a process capability study is performed prior to setting control limits, to ensure that the process is capable of performing within the specification limits. Specification limits define the region within which the metric must remain for proper functioning of the process or product.

—Drive continuous process improvement. Control charts identify out of control points, whose causes are identified and eliminated. Limits are then recalculated and tightened and the process is repeated.

Popular types of control charts

Run Chart
x̅ and S Chart
x̅ and R Chart
Individual and Moving Range Charts
p-, np-, c-, and u-charts
UWMA and EWMA Charts
CUSUM Charts
Levey-Jennings
Multivariate Control Charts

How to create control and trend charts with limits lines using Spotfire

Creating lines with lines and curves property

1. Control limits or specification limits may have predetermined values which can be set using the fixed value line option.

2. Predefined aggregated values can be used for creating lines like upper outer fence. The upper outer fence (UOF) is defined as the threshold located at Q3 + (3*IQR) where Q3 is third quartile and IQR stands for interquartile range

Control lines 1 Shewhart Control Charts and Trend Charts with Limits Lines in TIBCO Spotfire
3. Property values can be used to specify dynamic control lines where it can be changed by a user, a script running in background, or a data function. Properties updates can be triggered by a user-friendly interface like selecting Sigma level and metrics.

ControlLine2 Shewhart Control Charts and Trend Charts with Limits Lines in TIBCO Spotfire
4. Custom expressions, which can be easily modified, help create specific calculations for a control line. They can be as simple as Avg([Y]) + 3.0*StdDev([Y]). It can also be combined with properties.

Calculation-based lines

Sometimes, lines can a be complex equation: Y(Control Line) = C2 + (D/p) * cos [(p/D) * X + C1]

In this case, C1 and C2 are constants which can be properties in Spotfire, and D—which is drag in this equation—can be a column. Spotfire Math functions can be used to determine the cosine of the argument. The weight per length of line p can be another calculated column. In Spotfire, an expression may look like this where $ symbol indicates properties:

$ {RunYieldsTarget} +([Metric5]/[Metric6])*Cos([Metric5]/[Metric6]*[Metric1]+$ {Rpk.calculated})

Moving range chart

In order to create moving ranges, Spotfire LastPeriods OVER function is very useful. It includes the current node and the n – 1 previous node, which can be used to calculate moving averages.

Avg([Metric5]) OVER (LastNode([Axis.X,n]))/n

This function calculates n period average where n is an integer. If X-axis is defined as month, it will provide three month rolling average.

Control lines from another batch or process

Sometimes control lines can be from another golden batch or process.

Curve from another data table allows users to specify a custom curve expression, which makes use of parameters available in a specified data table or golden batch.

Line from column value can display lines based on X and Y coordinates that already exist in two columns of your analysis. For example, coordinate values could be calculated from the input data using a statistical calculation from a calculated column or even a data function, and the output result could be presented as coordinate values for a curve.

All these building blocks can be combined nested and morphed into a beautiful dashboard.

Process Control1 Shewhart Control Charts and Trend Charts with Limits Lines in TIBCO Spotfire

Try out Spotfire for yourself and see how easy it is to create insightful and beautiful dashboards from your data. Check out other Tips and Tricks blog posts to learn more.

Let’s block ads! (Why?)

The TIBCO Blog

Charts, Control, limits, Lines, Shewhart, Spotfire, TIBCO, trend
  • Recent Posts

    • Accelerate Your Data Strategies and Investments to Stay Competitive in the Banking Sector
    • SQL Server Security – Fixed server and database roles
    • Teradata Named a Leader in Cloud Data Warehouse Evaluation by Independent Research Firm
    • Derivative of a norm
    • TODAY’S OPEN THREAD
  • Categories

  • Archives

    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited