• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

The Benefits of Doing Machine Learning and Analytics in the Cloud

December 17, 2019   TIBCO Spotfire
TIBCOMachineLearningintheCloud e1575902962347 696x365 The Benefits of Doing Machine Learning and Analytics in the Cloud

Reading Time: 4 mins 30 sec.

Analytics with data science has been one of the last enterprise systems to move to the cloud, but the situation has changed fundamentally in just the last year or two. 

Suddenly, there is a proliferation of cloud-based databases and open-source machine learning development frameworks like SageMaker and TensorFlow—all of them now being heavily promoted by the major cloud vendors (Amazon, Microsoft, Google, and more). 

The cloud is quickly becoming everyone’s preferred way of doing machine learning and analytics. If you know your way around all the available components, it can be easy to build even the most sophisticated machine learning models for everything from image recognition to fraud detection in the cloud.

What to use—when and how 

There’s a ton of rich functionality available in the cloud that you can spin up right now. Over the last few years, there’s been a real shift from heavyweight on-premises installations of data science and predictive analytics to the more lightweight approach that the cloud offers. 

The breadth of capabilities that the cloud providers have created combined with the ease of use of a data science platform like TIBCO’s, organizations can spin up environments very quickly without a great deal of IT overhead. This combination of scalability and flexibility is the central value of the cloud when it comes to doing analytics. In fact, with TIBCO® Data Science, you can create solutions across all of these various cloud environments without needing to learn the nuances of each. 

Here’s a helpful chart of the technologies available for artificial intelligence (AI) and machine learning in the cloud: 

 The Benefits of Doing Machine Learning and Analytics in the Cloud

Proof it’s as easy as it sounds 

It really is that easy. The proof is in our customers’ success stories. Below are a couple of case studies that show how easy it can be to build applications based on sophisticated AI and machine learning, using the cloud.

  • Tipping Point Community fights poverty with data:

As a non-profit organization looking to better understand the drivers behind poverty, Tipping Point started a project to explore correlations between parking citations, late fees, and low-income individuals. Using TIBCO Data Science’s collaborative interface for business users and deploying machine learning models in the cloud to discover insights, Tipping Point found a disproportionate impact on low-income drivers. We’re proud to say these data-driven recommendations that Tipping Point made to the San Francisco Office of Financial Justice led to a change in policy to make the system fairer.

  • Leidos unlocks big data potential for healthcare analytics:

Leidos partnered with TIBCO Data Science, an enterprise-class cloud platform that leverages Amazon Web Services (AWS), to allow users to create machine learning workflows. By using the cloud, Leidos opened up collaboration across teams and was able to perform quicker analyses. It was able to analyze healthcare data to determine the cause of disease outbreaks like HIV and Zika, consolidate data around emerging healthcare policies, and explore human factors affecting space exploration for NASA. 

Across these and many other examples, performing analytics and machine learning in the cloud gives organizations the ability to uncover hidden patterns, anticipate outcomes, and react quickly to real-world events. Data science teams can spin up new systems in the cloud in a matter of hours, performing advanced analytics in a low-code, visual data science environment like TIBCO’s to find the answers to their toughest problems, fast.

Connect teams & scale algorithms with cloud-enabled tech

The TIBCO Data Science platform provides an interactive interface for teams to collaborate on projects in the cloud. Teams scattered around the globe, across different departments, in different roles, can connect through the web-based interface to solve difficult data science problems together. Furthermore, the algorithms TIBCO provides through a simple drag and drop interface are not only easy to use, without requiring a lot of code, but they’re also readily scalable and immensely powerful. But if coding is your thing, you can also use the embedded Jupyter Notebooks that are built into the platform.

Watch this webinar for more on available cloud technologies and the many benefits of doing machine learning and analytics in the cloud.

Get started right now. Go to the AWS marketplace and sign up for a preview of the TIBCO Data Science platform, connect to open sources of data, and start building machine learning models today. 

Let’s block ads! (Why?)

The TIBCO Blog

analytics, benefits, Cloud, Doing, Learning, Machine
  • Recent Posts

    • Recreating Art – the unexpected way
    • Upcoming Webinar: Using Dynamics 365 to Empower your Marketing and Sales Teams with Digital Automation
    • Center for Applied Data Ethics suggests treating AI like a bureaucracy
    • Improving Dynamics 365 Data Integrations with Alternate Keys
    • Trump’s Note to Biden
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited