• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Machine Learning for AML Gives Pros “Superhuman” Powers

November 27, 2018   FICO

Many anti-money laundering (AML) operations work hard to show that they are in compliance with rules and regulations, and struggle to maintain appropriate staff levels to work all the alerts. Despite all this effort, global money laundering is out of control; the annual amount of money laundered is estimated at about 2-5% of global domestic gross product (GDP). High false positives and inefficient processes are one reason that the vast majority of money laundering is going unstopped.

Machine learning for AML is dramatically improving the efficacy of compliance operations, today. I recently spoke on this topic to an enthusiastic audience at the Association of Certified Anti-Money Laundering [AML] Specialists (ACAMS) 18th Annual AML & Financial Crime Conference in Las Vegas. With the energy of Vegas providing an appropriate backdrop, we talked about:

How Machine Learning Is Different from Artificial Intelligence (AI)

As summarized in the graphic above, machine learning does not perform humanistic programmed cognitive tasks. Rather, machine learning algorithms learn novel new relationships from data. Uncovering hidden patterns in money movement makes machine learning for AML a very attractive enhancement to existing AML operations.

Using Machine Learning to Prioritize Alerts and Find More Money Laundering

In my presentation I referenced a 2017 article by McKinsey on the topic of applying new technologies to AML. With 99% of alerts turning out to be false positives, McKinsey noted that machine learning techniques reduce false positives 20-30%. In turn, investigators’ workload can be reduced by 50%.

The plot below illustrates how organizations typically use machine learning scores. By choosing a score threshold, an AML professional can understand the amount of money laundering detected and consequently control the false positive rate. The AML professional therefore chooses one or more thresholds triggering analysts to work cases. Transactions may also be auto-actioned.

Machine Learning AML 1 Machine Learning for AML Gives Pros “Superhuman” Powers

Source: FICO Blog

Challenging Know Your Customer (KYC) Practices Using Real-Time Behavioral Analytics

Machine learning for AML can drive a 3x improvement in alarm-to-suspicious activity report (SAR) conversion rate through tighter segmentation, according to McKinsey. Examples of finer segmentation include learning that a customer has financial relationships outside of the US, is a high net worth individual, or is a small business owner. In this way, machine learning challenges the status quo of KYC processes using real-time behavioral analytics based on financial transaction activity.

Machine learning can even lead to better rules, as illustrated in the figure below. For example, the machine learning model may find customers who make low-dollar online gambling transactions are doing so as a way to move funds off-shore. By understanding that machine learning algorithms detect new unseen patterns that reveal illicit activity (but rules don’t allow for), new and better rules and insight can be derived.

Machine Learning AML 2 Machine Learning for AML Gives Pros “Superhuman” Powers

Source: FICO Blog

How Machine Learning Models Are Made Explainable

In addition to using machine learning, I described how these machine learning models are made explainable to investigators, regulators and internal governance teams. The example below shows how the multiple variables comprising the model (V1-V6 at far left) each feed into machine learning algorithms, the results of which are processed by a Reason Reporting and Ranking Algorithm. The reasons are ranked in terms of importance and relevance in explaining how the model arrived at the score.

Machine Learning AML 3 Machine Learning for AML Gives Pros “Superhuman” Powers

Source: FICO Blog

This algorithm has been used in the FICO® Falcon® Platform for years, and speaks to the likelihood that value of a variable (and consequently the reason code) would contribute to the observed score. This is based on the totality of data used to construct the machine learning model and is probabilistic. By ranking the top reason codes, analysts and regulators will understand how the score was derived, which can aid in investigations and creating narratives of the SAR.

In sum, machine learning for AML can help with key compliance challenges like false positives, gaining new insight and understanding of customer behavior, and providing decision logic that is clear and explainable. Clearly, machine learning technology adds a “superhuman” boost to the efficacy of AML efforts!

For more information, read our Artificial Intelligence in AML and KYC: Enhancing Accuracy and Reducing Costs Hot Topic Q&A.

To learn more about how I help FICO develop technology to fight financial crime, follow me on Twitter @ScottZoldi.

Let’s block ads! (Why?)

FICO

Gives, Learning, Machine, Powers, Pros, “Superhuman”
  • Recent Posts

    • Accelerate Your Data Strategies and Investments to Stay Competitive in the Banking Sector
    • SQL Server Security – Fixed server and database roles
    • Teradata Named a Leader in Cloud Data Warehouse Evaluation by Independent Research Firm
    • Derivative of a norm
    • TODAY’S OPEN THREAD
  • Categories

  • Archives

    • April 2021
    • March 2021
    • February 2021
    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited