I have the following code leading to a broken plot. However, I physical intuition (based on the problem I am dealing with) says that there should be a continuous curve.
A[\[Phi]_, \[CapitalOmega]_, \[Gamma]_] = \[Sqrt](1 -
2 \[CapitalOmega] Cos[\[Phi]] + \[CapitalOmega]^2 - \
\[Gamma]^2);(*= \[Sqrt](|1-\[CapitalOmega] Exp[I \
\[Phi]](|^2)-\[Gamma]^2)=\[Sqrt](J^2-\[Gamma]^2). If J>\[Gamma] \
system is PT symmetric, otherwise its not.*)
alpha[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, t_] =
Cos[A[\[Phi], \[CapitalOmega], \[Gamma]]* t] - \[Gamma]/
A[\[Phi], \[CapitalOmega], \[Gamma]] Sin[
A[\[Phi], \[CapitalOmega], \[Gamma]] *t];
beta[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, t_] = -I (
1 - \[CapitalOmega]* Exp[-I \[Phi]])/
A[\[Phi], \[CapitalOmega], \[Gamma]] Sin[
A[\[Phi], \[CapitalOmega], \[Gamma]]* t];
rho[\[Phi]_, \[CapitalOmega]_, \[Gamma]_,
t_] = (1/(
Abs[alpha[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 +
Abs[beta[\[Phi], \[CapitalOmega], \[Gamma], t]]^2) ) {{Abs[
alpha[\[Phi], \[CapitalOmega], \[Gamma], t]]^2,
alpha[\[Phi], \[CapitalOmega], \[Gamma], t]*
Conjugate[
beta[\[Phi], \[CapitalOmega], \[Gamma],
t]]}, {beta[\[Phi], \[CapitalOmega], \[Gamma], t]*
Conjugate[alpha[\[Phi], \[CapitalOmega], \[Gamma], t]],
Abs[beta[\[Phi], \[CapitalOmega], \[Gamma], t]]^2}};
p[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, t_] =
rho[\[Phi], \[CapitalOmega], \[Gamma], t][[2]][[2]];
x[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, t_] =
rho[\[Phi], \[CapitalOmega], \[Gamma], t][[1]][[2]];
funQ\[Rho]out[\[Phi]_, \[CapitalOmega]_, \[Gamma]_,
t_] = -(((-1 +
p[\[Phi], \[CapitalOmega], \[Gamma],
t]) ((-1 +
p[\[Phi], \[CapitalOmega], \[Gamma],
t]) p[\[Phi], \[CapitalOmega], \[Gamma], t] +
Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2) Log[((-1 +
p[\[Phi], \[CapitalOmega], \[Gamma],
t]) ((-1 +
p[\[Phi], \[CapitalOmega], \[Gamma],
t]) p[\[Phi], \[CapitalOmega], \[Gamma], t] +
Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2))/(
2 ((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma],
t]]^2))])/(((-1 +
p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2) Log[
2])) - 1/
Log[2] (-1 +
Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]) Log[
1/2 (1 -
Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2])] +
1/Log[2] (1 +
Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]) Log[
1/2 (1 +
Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2])] - ((1 -
5 p[\[Phi], \[CapitalOmega], \[Gamma], t] +
10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 -
10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 +
5 p[\[Phi], \[CapitalOmega], \[Gamma], t]^4 -
p[\[Phi], \[CapitalOmega], \[Gamma], t]^5 +
5 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 -
13 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 +
11 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 -
3 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 +
6 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 -
2 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 +
Sqrt[((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^5]) Log[
1/(2 ((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^2) (1 -
5 p[\[Phi], \[CapitalOmega], \[Gamma], t] +
10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 -
10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 +
5 p[\[Phi], \[CapitalOmega], \[Gamma], t]^4 -
p[\[Phi], \[CapitalOmega], \[Gamma], t]^5 +
5 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 -
13 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 +
11 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 -
3 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 +
6 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 -
2 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 +
Sqrt[((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma],
t]]^2)^5])])/(2 ((-1 +
p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^2 Log[
2]) + ((-1 + 5 p[\[Phi], \[CapitalOmega], \[Gamma], t] -
10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 +
10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 -
5 p[\[Phi], \[CapitalOmega], \[Gamma], t]^4 +
p[\[Phi], \[CapitalOmega], \[Gamma], t]^5 -
5 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 +
13 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 -
11 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 +
3 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 -
6 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 +
2 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 +
Sqrt[((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^5]) Log[-(
1/(2 ((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma],
t]]^2)^2)) (-1 +
5 p[\[Phi], \[CapitalOmega], \[Gamma], t] -
10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 +
10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 -
5 p[\[Phi], \[CapitalOmega], \[Gamma], t]^4 +
p[\[Phi], \[CapitalOmega], \[Gamma], t]^5 -
5 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 +
13 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 -
11 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 +
3 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 -
6 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 +
2 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 +
Sqrt[((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma],
t]]^2)^5])])/(2 ((-1 +
p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^2 Log[2]) +
1/Log[4] (-4 ArcTanh[
Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] Sqrt[(-1 +
p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2] +
2 ArcTanh[
Sqrt[(1 - 2 p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
4 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] Sqrt[(1 -
2 p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
4 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2] + Log[4] -
2 Log[1 -
Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] -
2 Log[1 +
Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] +
Log[1 - Sqrt[(1 -
2 p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
4 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] +
Log[1 + Sqrt[(1 -
2 p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 +
4 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]]) ;
Plot[{Re[funQ\[Rho]out[0, 0.4, 0.5, t]]}, {t, 0, 10},
PlotRange -> All, PlotStyle -> {Blue, Thick}, AxesOrigin -> {0, 0}]
How can one resolve the issue?
—————————Un-related text——————————
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa