• Home
  • About Us
  • Contact Us
  • Privacy Policy
  • Special Offers
Business Intelligence Info
  • Business Intelligence
    • BI News and Info
    • Big Data
    • Mobile and Cloud
    • Self-Service BI
  • CRM
    • CRM News and Info
    • InfusionSoft
    • Microsoft Dynamics CRM
    • NetSuite
    • OnContact
    • Salesforce
    • Workbooks
  • Data Mining
    • Pentaho
    • Sisense
    • Tableau
    • TIBCO Spotfire
  • Data Warehousing
    • DWH News and Info
    • IBM DB2
    • Microsoft SQL Server
    • Oracle
    • Teradata
  • Predictive Analytics
    • FICO
    • KNIME
    • Mathematica
    • Matlab
    • Minitab
    • RapidMiner
    • Revolution
    • SAP
    • SAS/SPSS
  • Humor

Tag Archives: plot

How to make a function plot dynamic in a combined graphics?

September 19, 2020   BI News and Info

 How to make a function plot dynamic in a combined graphics?

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

Read More

Dan Bongino: Explosive New Revelations Emerge About the Plot Against Trump

July 25, 2020   Humor
0 Dan Bongino: Explosive New Revelations Emerge About the Plot Against Trump

The Dan Bongino Show
The Bongino Report

Let’s block ads! (Why?)

ANTZ-IN-PANTZ ……

Read More

Blackbody Intensity Plot

July 11, 2020   BI News and Info

My objective is to plot the blackbody spectrum and also find out the integral value for a defined limit. However, I am getting the following constant value of Blackbody intensity and also getting an error message while calculating the radiated power. Therefore, it would be great if anyone can suggest me how to solve the problem. Here is the expression for dataInt. I am unable to attach the data file here. So, please let me know if it is required to be uploaded.

dataInt =  Interpolation[Table[{data[[i, 1]], data[[i, 2]]}, {i, 1, N1}], InterpolationOrder -> 1];

b2EHC Blackbody Intensity Plot

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

Read More

Adding shadows and reflection to 3D plot

May 16, 2020   BI News and Info
 Adding shadows and reflection to 3D plot

I would like to make the surface of my 3D plot have reflection and shadows, like in this plot: https://commons.wikimedia.org/wiki/File:Triadic_harmonic_entropy.png

Is there any way to do this with Mathematica? If not, what software can make plots like these?

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

Read More

How to plot a line made by the touching points of two function?

April 2, 2020   BI News and Info
 How to plot a line made by the touching points of two function?

suppose we have the following functions
f[x_,y_]:=Cos[x]+Cos[y];
g[x_,y_]:=x^2+y^2;
How to plot the contour formed by (x,y) points where the functions f[x,y] touches with g[x,y]? I had tried by the following command,
ContourPlot[f[x,y] ==g[x,y],{x,-Pi,Pi},{y,-Pi,Pi},PlotPoints -> 100];
But I failed.
Someone please help me how to fix it.

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

Read More

ListPlot will not plot my two dimensional array

March 16, 2020   BI News and Info

I am working in an experimental data analysis, the equipment I used handed me the data in txt. format, to import to Mathematica I used the following:

data = Import[
   "/Users/gustavocustodio/Downloads/debyescherrertable.txt"];

xrdata = Partition[StringSplit[data], 2]

which does give me the list of pairs I wanted, but I cannot plot this, I tried ListPlot, but it only shows and empty plot.

My .txt file has this formkAQr9 ListPlot will not plot my two dimensional array

1 Answer

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

Read More

Write the code to display a given plot [closed]

February 23, 2020   BI News and Info
Closed. This question is off-topic. It is not currently accepting answers.


Lzhl2 Write the code to display a given plot [closed]

Write the code to display the exact image shown above.

2 Answers

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

Read More

How to draw different colors on a 2D plot with color depending on xy coordinates?

June 28, 2019   BI News and Info

I’m making a composite 2D plot, combining different types of plots (Graphics, ListPlot etc.) with Show. One layer of the plots contains a polygon filled with colors which depend on the 2D coordinates on the polygon. (The vertices of the polygon are {{0.6400744901465835, 0.3299704937157755}, {0.29999999497269986, 0.5999999722714001}, {0.15001662467009716, 0.060006658004021524}}.)

To draw the polygon, I first thought of using ColorFunction with DensityPlot, but it appeared to only receive the value of the function itself, not the coordinates. My next attempt was with RegionPlot, which does get the coordinates. This looks like the following code.

(* Functions to calculate color from x and y coordinates *)
xyY2XYZ[x_, y_, Y_] = {(x Y)/y, Y, -(((-1 + x + y) Y)/y)};
normalize[x_] := x/Max@x
XYZ2sRGB[c_] := (normalize[( {
      {3.2406255, -1.537208, -0.4986286},
      {-0.9689307, 1.8757561, 0.0415175},
      {0.0557101, -0.2040211, 1.0569959}
     } ).c])^(1/2.2)
(* Actual plotting *)
RegionPlot[True, {x, 0.14, 0.65}, {y, 0.05, 0.61}, 
 ColorFunction -> 
  Function[{x, y}, 
   RGBColor[
    If[Max@Abs@Im@# != 0, {1, 1, 1}, Re@#] &@
     XYZ2sRGB@xyY2XYZ[x, y, 1]]], ColorFunctionScaling -> False, 
 PlotPoints -> 250]

g8prL How to draw different colors on a 2D plot with color depending on xy coordinates?

But I had to increase PlotPoints to 250, otherwise the result was too pixelized on the border, and MaxRecursion didn’t appear to affect the output. This results in long time to wait, and the border still remains jagged.
Also, the blue line between the image and the frame is an unwanted artifact.

So, what’s a better way to do this?

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

Read More

How can I plot using with very small values a density and a cut plot?

March 29, 2019   BI News and Info
 How can I plot using with very small values a density and a cut plot?

I am trying to plot the following function, using a density plot, unfortunately, I do not get any output, it seems to be for the small values.

  L = 15;
    F[x, y]=  - ((2.6006853090496755`*^-17 Abs[x + I y] BesselJ[-(1/4), 
  0.45` Im[Sqrt[x + I y]]^2] BesselJ[-(1/4), 
  0.45` Re[Sqrt[x + I y]]^2] BesselJ[3/4, 
  0.45` Im[Sqrt[x + I y]]^2] BesselJ[3/4, 
  0.45` Re[Sqrt[x + I y]]^2] Im[Sqrt[x + I y]]^2 Re[Sqrt[
  x + I y]]^2)/((x + I y) Conjugate[Sqrt[x + I y]]^2))

I can obtain and get a density plot only if remove the small value, the goal is to obtain the plot like this, but Note that the example is without the small value.

 outplot = 

DensityPlot[
Abs[((Abs[x + I y] BesselJ[-(1/4),
0.45Im[Sqrt[x + I y]]^2] BesselJ[-(1/4),
0.45
Re[Sqrt[x + I y]]^2] BesselJ[3/4,
0.45Im[Sqrt[x + I y]]^2] BesselJ[3/4,
0.45
Re[Sqrt[x + I y]]^2] Im[Sqrt[x + I y]]^2 Re[Sqrt[
x + I y]]^2)/((x + I y) Conjugate[Sqrt[x + I y]]^2))], {x, -L,
L}, {y, -L, L}, PlotRange -> Full, PlotPoints -> 150,
ColorFunction -> “Rainbow”, Axes -> True, AxesLabel -> {x, y},
FrameTicks -> True, Exclusions -> None]

How can I fixed this problem in order to obtain the plot well?
Thanks!

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

Read More

Unexpected breaks in a smooth plot

March 3, 2019   BI News and Info
 Unexpected breaks in a smooth plot

I have the following code leading to a broken plot. However, I physical intuition (based on the problem I am dealing with) says that there should be a continuous curve.

    A[\[Phi]_, \[CapitalOmega]_, \[Gamma]_] = \[Sqrt](1 - 
    2 \[CapitalOmega] Cos[\[Phi]] + \[CapitalOmega]^2 - \
\[Gamma]^2);(*= \[Sqrt](|1-\[CapitalOmega] Exp[I \
\[Phi]](|^2)-\[Gamma]^2)=\[Sqrt](J^2-\[Gamma]^2). If J>\[Gamma] \
system is PT symmetric, otherwise its not.*)
alpha[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, t_] = 
 Cos[A[\[Phi], \[CapitalOmega], \[Gamma]]* t] - \[Gamma]/
   A[\[Phi], \[CapitalOmega], \[Gamma]] Sin[
    A[\[Phi], \[CapitalOmega], \[Gamma]] *t]; 
beta[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, t_] = -I (
   1 - \[CapitalOmega]* Exp[-I \[Phi]])/
   A[\[Phi], \[CapitalOmega], \[Gamma]] Sin[
    A[\[Phi], \[CapitalOmega], \[Gamma]]* t];

rho[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, 
   t_] = (1/(
    Abs[alpha[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 + 
     Abs[beta[\[Phi], \[CapitalOmega], \[Gamma], t]]^2) ) {{Abs[
      alpha[\[Phi], \[CapitalOmega], \[Gamma], t]]^2, 
     alpha[\[Phi], \[CapitalOmega], \[Gamma], t]*
      Conjugate[
       beta[\[Phi], \[CapitalOmega], \[Gamma], 
        t]]}, {beta[\[Phi], \[CapitalOmega], \[Gamma], t]*
      Conjugate[alpha[\[Phi], \[CapitalOmega], \[Gamma], t]], 
     Abs[beta[\[Phi], \[CapitalOmega], \[Gamma], t]]^2}};
p[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, t_] = 
  rho[\[Phi], \[CapitalOmega], \[Gamma], t][[2]][[2]];
x[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, t_] = 
  rho[\[Phi], \[CapitalOmega], \[Gamma], t][[1]][[2]];

funQ\[Rho]out[\[Phi]_, \[CapitalOmega]_, \[Gamma]_, 
   t_] = -(((-1 + 
          p[\[Phi], \[CapitalOmega], \[Gamma], 
           t]) ((-1 + 
             p[\[Phi], \[CapitalOmega], \[Gamma], 
              t]) p[\[Phi], \[CapitalOmega], \[Gamma], t] + 
          Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2) Log[((-1 + 
            p[\[Phi], \[CapitalOmega], \[Gamma], 
             t]) ((-1 + 
               p[\[Phi], \[CapitalOmega], \[Gamma], 
                t]) p[\[Phi], \[CapitalOmega], \[Gamma], t] + 
            Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2))/(
         2 ((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
            2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], 
               t]]^2))])/(((-1 + 
            p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
          2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2) Log[
         2])) - 1/
    Log[2] (-1 + 
      Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
       2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]) Log[
     1/2 (1 - 
        Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
         2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2])] + 
   1/Log[2] (1 + 
      Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
       2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]) Log[
     1/2 (1 + 
        Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
         2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2])] - ((1 - 
        5 p[\[Phi], \[CapitalOmega], \[Gamma], t] + 
        10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 - 
        10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 + 
        5 p[\[Phi], \[CapitalOmega], \[Gamma], t]^4 - 
        p[\[Phi], \[CapitalOmega], \[Gamma], t]^5 + 
        5 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 - 
        13 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
          x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 + 
        11 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 Abs[
          x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 - 
        3 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 Abs[
          x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 + 
        6 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 - 
        2 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
          x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 + 
        Sqrt[((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
          2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^5]) Log[
       1/(2 ((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
           2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^2) (1 - 
          5 p[\[Phi], \[CapitalOmega], \[Gamma], t] + 
          10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 - 
          10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 + 
          5 p[\[Phi], \[CapitalOmega], \[Gamma], t]^4 - 
          p[\[Phi], \[CapitalOmega], \[Gamma], t]^5 + 
          5 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 - 
          13 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
            x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 + 
          11 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 Abs[
            x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 - 
          3 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 Abs[
            x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 + 
          6 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 - 
          2 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
            x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 + 
          Sqrt[((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
            2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], 
               t]]^2)^5])])/(2 ((-1 + 
          p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
        2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^2 Log[
       2]) + ((-1 + 5 p[\[Phi], \[CapitalOmega], \[Gamma], t] - 
        10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 + 
        10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 - 
        5 p[\[Phi], \[CapitalOmega], \[Gamma], t]^4 + 
        p[\[Phi], \[CapitalOmega], \[Gamma], t]^5 - 
        5 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 + 
        13 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
          x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 - 
        11 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 Abs[
          x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 + 
        3 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 Abs[
          x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 - 
        6 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 + 
        2 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
          x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 + 
        Sqrt[((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
          2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^5]) Log[-(
         1/(2 ((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
            2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], 
               t]]^2)^2)) (-1 + 
          5 p[\[Phi], \[CapitalOmega], \[Gamma], t] - 
          10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 + 
          10 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 - 
          5 p[\[Phi], \[CapitalOmega], \[Gamma], t]^4 + 
          p[\[Phi], \[CapitalOmega], \[Gamma], t]^5 - 
          5 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 + 
          13 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
            x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 - 
          11 p[\[Phi], \[CapitalOmega], \[Gamma], t]^2 Abs[
            x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 + 
          3 p[\[Phi], \[CapitalOmega], \[Gamma], t]^3 Abs[
            x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2 - 
          6 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 + 
          2 p[\[Phi], \[CapitalOmega], \[Gamma], t] Abs[
            x[\[Phi], \[CapitalOmega], \[Gamma], t]]^4 + 
          Sqrt[((-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
            2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], 
               t]]^2)^5])])/(2 ((-1 + 
          p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
        2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2)^2 Log[2]) + 
   1/Log[4] (-4 ArcTanh[
        Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
         2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] Sqrt[(-1 +
           p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
        2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2] + 
      2 ArcTanh[
        Sqrt[(1 - 2 p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
         4 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] Sqrt[(1 - 
          2 p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
        4 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2] + Log[4] - 
      2 Log[1 - 
         Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
          2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] - 
      2 Log[1 + 
         Sqrt[(-1 + p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
          2 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] + 
      Log[1 - Sqrt[(1 - 
           2 p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
         4 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]] + 
      Log[1 + Sqrt[(1 - 
           2 p[\[Phi], \[CapitalOmega], \[Gamma], t])^2 + 
         4 Abs[x[\[Phi], \[CapitalOmega], \[Gamma], t]]^2]]) ;

Plot[{Re[funQ\[Rho]out[0, 0.4, 0.5, t]]}, {t, 0, 10}, 
 PlotRange -> All, PlotStyle -> {Blue, Thick}, AxesOrigin -> {0, 0}]

How can one resolve the issue?
—————————Un-related text——————————
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Let’s block ads! (Why?)

Recent Questions – Mathematica Stack Exchange

Read More
« Older posts
  • Recent Posts

    • PUNNIES
    • Cashierless tech could detect shoplifting, but bias concerns abound
    • Misunderstood Loyalty
    • Pearl with a girl earring
    • Dynamics 365 Monthly Update-January 2021
  • Categories

  • Archives

    • January 2021
    • December 2020
    • November 2020
    • October 2020
    • September 2020
    • August 2020
    • July 2020
    • June 2020
    • May 2020
    • April 2020
    • March 2020
    • February 2020
    • January 2020
    • December 2019
    • November 2019
    • October 2019
    • September 2019
    • August 2019
    • July 2019
    • June 2019
    • May 2019
    • April 2019
    • March 2019
    • February 2019
    • January 2019
    • December 2018
    • November 2018
    • October 2018
    • September 2018
    • August 2018
    • July 2018
    • June 2018
    • May 2018
    • April 2018
    • March 2018
    • February 2018
    • January 2018
    • December 2017
    • November 2017
    • October 2017
    • September 2017
    • August 2017
    • July 2017
    • June 2017
    • May 2017
    • April 2017
    • March 2017
    • February 2017
    • January 2017
    • December 2016
    • November 2016
    • October 2016
    • September 2016
    • August 2016
    • July 2016
    • June 2016
    • May 2016
    • April 2016
    • March 2016
    • February 2016
    • January 2016
    • December 2015
    • November 2015
    • October 2015
    • September 2015
    • August 2015
    • July 2015
    • June 2015
    • May 2015
    • April 2015
    • March 2015
    • February 2015
    • January 2015
    • December 2014
    • November 2014
© 2021 Business Intelligence Info
Power BI Training | G Com Solutions Limited